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GENERAL INTRODUCTION 

A panel data set consists of measurements taken from several individuals over time. These repeated 

measures can often be made where single measurements can be made, unless the measurement process is 

destructive (Crowder and Hsind, 1990). The availability of panel data has facilitated empirical research 

on a wide variety of areas in economics. While one-time retrospective interviews tend to be subject 

to recall error, panel surveys tend to generate more reliable data since the time lapse between the 

interview and the time periods to which the questions refer is reduced (Solon, 1989). Moreover, panel 

data sets allow researchers to analyze a number of economic questions that would not otherwise be 

possible to address using only cross-section or only time-series data sets. For example, one analytical 

benefit of panel data relative to cross-sectional data is that panel data make possible the measurement 

and analysis of micro-level dynamics. In addition, the magnitude of omitted variables may be controlled 

and accounted for using panel data sets. 

Unlike a data set that is obtained by pooling several cross-sectional data sets (each involving a 

different set of individuals) taken at different time points, a panel data set has the special characteristic 

that some observations may not be stochastically independent. In particular, measurements taken from 

the same individual are likely to be correlated in some way. It is this characteristic that demands a 

special set of analysis techniques. To account for the individual variability, statistical models, such as 

random effect and random coefficient models, that contain individual random components are often 

used in panel data regression analysis. The random effect model assumes that 

Yit = Qf + y3'x,-t+eft, i = 1,.. .,n, t = 1 T, 

Qi ~ (/^aiO-aa), (1) 

e,£ ~ (O,0-ee), 

where a, and e,t are independent of each other, and q,, i = l,...n, represent random unobserved 

individual effects possibly correlated with the k xl vector of explanatory variables, i,t, and /3 is a A: x 1 

vector of unknown parameters. The average intercept for this population of individuals is fia, and <Taa 

is the variability in the response Yu due to the individual differences. On the other hand, the random 
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coefficient model is 

+ Cit, 

(2)  

where /3,- is independent of e,t, 0 is the average coefficient, and # represents the individual variability 

in all coefficients. Clearly, (1) is a special case of (2), and the random coefficient model (2) provides a 

very flexible way of accounting for individual variability in the panel data regression. 

Most econometric textbooks (e.g., Johnston, 1984; Judge et al., 1985; Greene. 1993) discuss the 

existing methods for analyzing models (1) and (2). Chamberlain (1984), Hsiao (1986). Matyas and 

Sevestre (1992), and Baltagi (1995b) also contain extensive discussions on the econometric analysis of 

panel data. Survey articles on the Scime topic include Maddala (1987) and Baltagi and Raj (1992). 

Likewise, special issues of journails have also been devoted to this subject (Heckman and Singer. 1982: 

Baltagi, 1995a). 

Measurement Error 

The e.xistence of measurement errors in most economic data has long been recognized (see. e.g.. 

Morgenstern, 1963). Not only do measurement errors arise from the survey process in the form of 

transcription, transmission or recording errors, variables may also be said to contain measurement 

error because the theoretical concepts they represent in a model have no observable counterparts. 

Most economic analyses involve these latent variables. Economic concepts such as utility, ability and 

achievement cannot be directly measured. In other cases, data available to researchers are not the same 

quantities to which economic agents are assumed to react. Thus, the available data merely serve as 

proxy variables for the theoretical concepts being studied. 

Many studies have found serious measurement error in the panel data used in common economic 

analyses. Bowers and Horvath (1984) found that the change in unemployment duration data between 

monthly surveys from the Current Population Survey (CPS) tended to exceed the actual elapsed time. 

They concluded that the reported length of job search contain weeks of search while a person is on the 

job or out of the labor force, and, thus, possibly biasing the results of studies that use this duration 

data. Duncan emd Hill (1985) conducted a validation study of Panel Study of Income Dynamics (PSID) 

by comparing responses to PSID questions with highly accurate company records. They found that 

although only a small percentage responded incorrectly to questions soliciting categorical variables such 
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as union contract coverage, receipt of medical insurance and number of paid vacation days, there was 

strong evidence of a substantial reporting error variance for some continuous measures like annual hours 

worked and subsequently, other measures based on these erroneously reported responses (e.g., average 

hourly earnings, defined as the ratio of cinnual earnings to annual hours worked). Bound et al. (1990) 

conducted a similar validation study using two data sources, the PSID Validation Study (PSIDVS) and 

the U. S. Current Population Survey. They compared labor market measures such as annual earnings, 

work hours and tenure, with company records and Socicil Security records, respectively. In their study, 

the unemployment event-history data and the four-year change in the ratio of annual earnings to annual 

hours were found to be unreliable. Altonji and Siow (1987) also found that measurement error in income 

had a strong influence on the relationship between consumption and income in their tests of the rational 

expectations life cycle model of consumption. Similarly, Aasness, Biorn, and Skjerpen (1993) estimated 

a system of consumer expenditure functions using Norwegian household budget (panel) data to make 

inferences on Engel functions while at the same time modeling measurement errors in consumption. 

The hypothesis of no measurement error in total expenditure was strongly rejected in the tests they 

conducted. 

Techniques for fitting models that account for measurement error in the explanatory variables to 

cross-sectional data are well-known (see Fuller, 1987). The statistical consequences of not accounting 

for errors in the explanatory variables include biased and inconsistent parameter estimates. When 

measurement error is accounted for, model parameters cannot be identified without extraneous in­

formation in the form of replication, valid instruments, or eudditional assumptions (Fuller, 1987). One 

common practice in dealing with measurement error involves the use of reliability estimates from valida­

tion studies or small studies in which the same variable is measured repeatedly from the same individual 

in a short period of time. However, Goldstein (1979) pointed out that getting these reliability estimates 

may be almost impossible in some cases. For instance, in reproducibility studies where learning can 

take place, measurements cannot be repeatedly taken from the same individual without allowing the 

measuring instrument to alter over time and dependencies between measurements to occur. Exclusion 

of the unobservable variable rather than using a proxy is a possible option. However, studies (McCal-

lum, 1972; Wickens, 1972; Aigner, 1974) have found that there may still be gains to using the proxy 

variable. 

So far, most of the existing research in panel data analysis has dealt with developing methods for 

models involving explanatory variables measured without error. While some studies have been devoted 

to the topic of measurement error in panel data, these studies are few relative to the many journal 
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articles and books that have discussed the analysis of panel data models without measurement error. 

Errors-in-Variables Models for Panel Data 

The presence of measurement error aJfects the performance of standard panel data methods. Solon 

(1989) noted that using steindard panel data methods applied to data where the measurement error 

is less serizJly correlated than the true value of the measured vzu'iable exacerbates the bias in the 

coefficient estimates, compared to using the usual regression methods for cross-sectional data. He cited, 

as an example, the estimation of wage premia for undesirable job characteristics, where the relevant 

model relating the wage measure for the i-th worker's job in period t, Yn- to the risk of injury on the 

job for the i-th worker in period t, r.c, is given by 

Yit = a + 0Xit +-Ti + €it, 1 = 1,2, ...,n, < = 1,2, — T. 

where 7,, i = 1.2,..., n, represent unknown individual-specific effects with £'(71) = 0. and x,f is assumed 

to be measured imperfectly by A',(, A',t = +Uit- Assume that var(i,t) = crl. cov(z,t. = Pr<^2-

var(tx,t) = o-j, cov(w,£, for any t and 5, cov(x,-,, u,-,), cov(7.-, u,-f), cov(f,t. 

cov(e,t, u,j), cov(x,t,e„) and cov(7,,e,t) are all zero, but cov(j:,t,7,) is nonzero. Applying ordinary 

least squares (OLS) to the cross-sectional regression of Yn on A',t in any particular period yields the 

estimator of /?, 0oLS, with probability limit 

cri+al + 

This estimator is inconsistent due to the nonzero correlation between i,f and 7,- and also due to the 

existence of measurement error. With panel data, the inconsistency due to the correlation between Xit 

and -fi may be eliminated by applying OLS to the differenced equation 

Yit — = 0{Xit — iJf.t-l) + (fit — 

so that 

P'inT„-.MAiifT = 13-

Hence, is still inconsistent since measurement error still exists. However, differencing increases the 

noise-to-signal ratio for the measured explanatory variable when Pr > Pu- Thus, using "changes" instead 

of "levels" intensifies the bias from the measurement error in the explanatory variables if Px > Pu-

Biorn (1992) also examined the behavior, in the presence of measurement error, of standard panel 

data methods originally developed for models without measurement error. Only estimators based on 
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transforming the data to eliminate the effects of individual heterogeneity in the panel data set were 

studied. Most of the estimators evaluated were found to be inconsistent. However, Biorn demonstrated 

that, given assumptions about the distribution of the true explanatory variables, consistent estimators 

can be constructed by taking a weighted average of inconsistent estimators. 

Griliches and Hausman (1986) studied the random effect model (1) with i = 1 when x,t is imprecisely 

measured by A'.t, where 

Aft = Xit + Uit- (3) 

They suggested controlling for individual heterogeneity by taking the difference 

Yi t -Y is  =  3{x i t  -  Xis)+ei t  -  €i , ,  t  ^  s  =  1,2 , . .  . ,T ,  (4) 

thereby eliminating a,-. Furthermore, they pointed out that the model parameters can be identified 

without the use of external instruments. That is, various functions of A',,, q =  1,2 T.  can be used 

as instrumental variables for (x,f — z,,) under given information about the distribution of x„ and u,f 

Hence, using each equation of the form (4) and the appropriate instrumental variables for (xu — Xi,). 

one can obtain several initial estimators of 0, denoted /3j, from the j-th equation. Note, however, that 

only a portion of the data is used in the computation of each of these initial estimators of li. Thus, these 

initial instrumental variables estimators cannot be expected to be efficient. Moreover, one can end up 

with more equations (4) thcin parameters to estimate. That is, the model can be over-identified. As 

Griliches and Hausmein (1986) pointed out, the initial estimators /?] must be constrained to be equal and 

must be weighted appropriately for the final estimator of 0 to be asymptotically efficient. Griliches and 

Hausman suggested the use of the generalized method of moments method (Hansen, 1982) to combine 

these initial estimators. 

The idea behind the generalized method of moments (GMM) is that moment conditions can be used 

to define model peirameters as well as to test model specification (Davidson eind MaicKinnon, 1993). For 

example, suppose an estimator of 0 in the model 

Y = X0 + v 

is sought using valid instruments W, where Y, X and TJ are all n x 1 vectors, and X and t] may be 

dependent on each other. The relevant orthogonality condition that can be used to derive the GMM 

estimator is 

= 0.  
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Under this condition, a GMM estimator of 3 is obtained by minimizing the criterion function 

(Y-X;9)'W(W'fiW)-^W'(Y-X/?), (5) 

where is an n x n matrix. This estimator is 

0GMM = [X'W(W'nW)-^W'X]-^X'W(W'ftW)-iW'Y, (6) 

and the corresponding estimator for the variance of /?GMM is 

var(/3GMM) = [X'W(W'nW)-iW'X] (7) 

If n is unknown, consistent estimators of (W'I2W)~' may be used. As shown by White (1980). 

although ft in (7) is typically an unknown quantity, one need not seek a consistent estimator of ft. 

Rather, (W'flW) can be estimated by (WfiW), where ft may be based on some reasonable estimator 

of ft, possibly a matrix whose i-th diagonal element is the square of the i-th residual (see also Davidson 

and MacKinnon, 1993. section 16.3). 

Griliches and Hausman (1986) used this GMM method to combine the initial instrumental variables 

estimators based on a number of differences (4). For the case with T = 3, they write 

YI =/?XJ+T7i, 

Y; =/3X5+T7;, 

Y3 =/?X;+T7;, 

where Yj has i-th element equal to (Vio — ^ii), Y? has i-th element equal to (Via — Vj-T), Y3 has i-th 

element equal to [Yiz — Yi\),i = l,...,n, and similarly for XJ, X^, and XJ using the observed A'.t, 

not Xit- Thus, T/J has z-th element equal to (e.o — Cii) — /?(ut2 — ««i)- *75 ^i^s i-th element equal to 

(cts — e,2) — — u,'2), and tjJ has i-th element equal to (£,-3 — e,i) — /?(u,-3 — u,i). Initial estimates 

of 0 from each equation, /5], j = 1,2,3 , are obtained based on YJ and XJ, using Wj, , z = 1,2, n. 

j = 1,2,3, as instruments. Let and Xy, denote the z-th element of YJ and XJ, respectively. Then, 

Griliches and Hausman defined the combined GMM estimator of/3 according to (6) using 

Y = ( m'l. (^2. >^22. ^2). • ^3n) 

X = ( (̂ 1*1 1' •^22' ^32)' w„. -Y2-„. ^3n) )'. 

W 
where 

= [ w'l. W2, . . . ,  w;. ]'-

w'u 0 0 w'l 2 0 0 win 0 0 

Wi = 0 wij 0 
' 

Wo = 0 W22 0 J • • • , w„ = 0 0 

0 0 W3l 0 0 W32 0 c 

0
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They suggested the use of the heteroscedastic-error weight matrix 
n 

(WnW) = 53 w^el-e.-w., (8) 
i=i 

where 

^ 'jli* *721' ^3i 1 = 1,2, 

('jji >?;„)' = J = 1,2.3. 

If both equation errors e,t and measurement errors u,t in (1) and (3) are assumed to be independent 

and identically distributed over i and t. 

'  nli 
\ 

-e.i) - 0{Ui2 - «il) 
\ 

var Ih 
= var (cfa — e«2) - 0{ui3 - «i2) 

 ̂ 3̂1 / ^ (ei3 -e.i) -  3{Ui3 - «il) / 
= r, i = 1.2,...,n. 

which is common over individuals. Therefore, under the assumption that e,£ and u,t are i.i.d. over i 

and t. more efBcient estimators for 3 and var(^GMM), denoted by /3gmm respectively, 

can be defined by replacing (W'fiW) in (6) emd (7) with 
n 

(W'f2W) = ^ w;fwf, (9) 
i=l 

where 
I " 

1=1 
The use of instrumental variables in estimation, however, is difficult in practice. Among the difficul­

ties association with instrumental variables methods is verifying the validity of instruments used in the 

estimation. This requires information about the distribution of the true explanatory variable and the 

measurement error, which are both unobservable. Aside from this, the method proposed by Griliches 

and Hausman (1986) yields little insight about the identification of model parameters. 

While there is an extensive literature on the analysis of random coefficient models like (2) (see, e.g.. 

Sw2imy, 1970; Carter and Yang, 1986; Harville, 1977; Laird euid Ware, 1982; Gumpertz and Pantula, 

1989), no previous studies have examined the random coefficient model (2) when all or some explanatory 

variables are measured with error, Jis in (3). 

Moment Structure Anedysis 

Moment structure analysis has been widely used in the social and behavioral sciences for models 

involving latent variables. Also known in the literature as structural equation modeling, it is a flexible 
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and comprehensive approach that encompasses many standard statistical models, including the analysis 

of variance, multiple regression and factor analysis. Bollen and Long (1993) point out that structural 

equation models accommodate simultaneous equations with many endogenous variables and allow ex­

ogenous and endogenous variables to be measured with error. Hoyle (1995) provides a nontechnical 

overview of various concepts and issues in structural equation modeling. See also Bollen (1989). 

Covariance Structure Analysis 

Browne (1982) gives a comprehensive review of covariance structures. The fundsunental hypothesis 

of covariance structure analysis is that the covariance matrix of observed variables is a matrix-valued 

function of a set of parameters, 

S = S(0). 

The structure of S(fl) may arise from the relationship of the observed variables to certain hypothetical 

unobservable or latent variables. The parameter vector 6 or the model is then said to be identified if 

S(0) = S(6) implies that 0 = 0. A necessary condition for 6 to be identified is that the number of 

elements of 6 be less than or equal to the number of non-redundant elements of S(0). If the latter 

e.xceeds the number of parameters to be estimated, the model is said to be over-identified. Only over-

identified models are of interest because only in this case is the issue of model fit meaningful. 

If 6 is identified, an estimator 6 is chosen by fitting the sample covariance matrix of the observed 

variables, S, to the covaricince matrix implied by the model, S(0). -A. scalar function which indicates 

the discrepancy between the sample covariance matrix S and the fitted matrix S. F(S;S(0)), called 

a discrepancy function, can be used to define an adequate fit. The estimator 9 is then obtained by 

minimizing the discrepauicy fimction, typically using iterative methods. The choice of discrepancy-

function affects the asymptotic distribution of an estimator 6. For the resulting estimator 6 to be 

consistent, 2(6) must be continuous, and the discrepancy function must be such that (i) F(S; S(0)) > 0. 

(ii) F(S;S(0)) = 0 if and only if S = S(6), and (iii) F(S;S(0)) is continuous in S and S(6) (Bollen, 

1989). 

The normal theory maximimi likelihood function 

FML(S; S(0)) = npn |S{0)| + tr[SS-i(0)] - In |S| - p], (10) 

where p is the total number of manifest or observable variables, is one of the most widely used dis­

crepancy functions. The use of Fml is based on the assumption that the observed variables have a 

multivariate normal distribution. Under this assumption, the resulting estimator of 9. denoted by 
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QmLt is consistent, asymptotically efficient and asymptotically normal. Using Fml(S; S(0)) in (10) as 

a fitting function also provides a test of overall model fit for over-identified models. If the observed 

variables follow the multivariate normal distribution, Fml(S, S(fl\iL)) is cisymptotically distributed as 

a X' random variable and czm be used to test the null hypothesis : 2 = S{0) (Bollen. 1989). 

Other estimators of 6 can be obtained by using other discrepancy functions. For instance, minimizing 

the discrepancy function 

FGLS(S: S(e)) = I [<r {[s - 2(0)1 W"'}] ( 1 1 )  

where W is a weight matrix (typically S~^), leads to the generalized least squares estimator of 6. 

The discrepancy function (10) is often used even when the observed variables are not normally 

distributed. Estimation in this manner is referred to in the literature as pseudo maximum likelihood 

(PML). Despite the violation of the assumptions underlying the use of (10), the resulting PML estimator 

is still consistent. However, inferences based on PML statistics may not be valid. Browne (1984) 

developed asymptotic distribution-free (ADF) methods, but ADF methods tend to be computationally 

intensive and statistically unstable since they involve fourth-order moments. Studies have also found 

that very large samples are required to get the ADF-based chi-square goodness-of-fit test to perform 

adequately (see. e.g.. Hu et al., 1992 and West ef a/., 1995). In a different line of research, PML inference 

procedures have been demonstrated to yield valid inferences even when the normality distributional 

assumption cannot be made (Browne. 1987; Anderson and Amemiya, 1988; Browne and Shapiro. 1988: 

Amemiya and Anderson, 1990; Papadopoulos and Amemiya, 1996). In particular, these studies have 

shown that for a large class of models, the x' distribution is appropriate for describing the sampling 

distribution of goodness-of-fit tests and that normal theory PML standard errors of many important 

pcirameter estimators are correct even if normality assumptions do not hold. Thus, researchers can act as 

if the data are normally distributed (regardless of whether or not they really are normally distributed), 

obtain parameter estimates via maximum normal likelihood and still make valid inferences about some 

pcirajneters. These findings suggest that moment structure analysis has a wide degree of applicability. 

Mean and Covariance Structure Analysis 

Unlike traditional structural equation models in which means are usually left unrestricted, some 

applications require imposing a structure not only on the covariance matrix of observed variables but 

also on the mean of the observed veiriables. Then the model consists of fi{6) and 2(0), where 6 is some 

vector of parameters. Under the assumption of normal observations, the maximum likelihood estimator 
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of 6 is obtained by minimizing 

Fml(Z- S: m(0). S(0)) =  n { [ Z -  M(fl)]'S[Z - ̂(6)] + In |r(0)| + '(0)] - In |S| - p} . (12) 

where Z and S are the sjimple mean vector and covariance matrix, respectively (Browne and Arminger. 

1995). 

Instead of having to modify the fitting function used in conventional software for covariance structure 

analysis, an alternative approach to mean and covariance structure analysis is to analyze the uncorrected 

second-order moment structure of the vector of observable variables augmented with a constant equal 

to one (Satorra, 1992). That is, packages that minimize (10) can be used to obtain 0ml by substituting 

the augmented moment matrices 

"" S + ZZ' Z' 

Z I 

S* = 

f t ' ( e )  =  

and 

^  n ( e ) + n ( d ) f M { e y  ^ { e y  

M O )  I  

for S cind S l { 6 )  in (10)  to yield the same estimator that would have been obtained by minimizing (12) .  

The error degrees of freedom given by the software needs to be decreased by one to obtain the correct 

value. 

Dissertation Organization 

This dissertation consists of two papers on linear errors-in-variables models for data consisting of 

continuous responses measured at several time points. The models cire static in nature; that is, no 

lagged dependent variables are included among the explanatory variables. 

The first paper considers identification and estimation of a random effect errors-in-variables model 

for pjinel data. Here, individual heterogeneity is assumed to be manifested in intercepts that randomly 

differ around a common mean across individuals. This random effect is also assumed to represent 

omitted individual-specific but time-independent characteristics not accounted for by the explanatory 

variables (Mundlak, 1978). The existing estimation method (Griliches and Hausmein, 1986) utilizes 

instrumental variables that can be obtained from within the panel data set. The paper proposes a new 

and more general approach to the identification and estimation of the model. This approach is the 

essentially moment structure analysis approcich. Numerical results that compare the performaJice of 

the proposed method with the e.xisting method are reported. 
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In the second paper, a generalization of the random effect errors-in-variables model that allows 

the slope coefBcients to differ across individuals is studied. This random coefficient errors-in-variables 

model has not been studied before. Consequently, no estimation method for this model exists. The 

paper examines the identification issue for this random coefBcient measurement error model. In addition, 

methods of estimating the parameters of the model cire proposed. Simulation results showing the finite 

sample behavior of the proposed estimation methods are presented. 

The dissertation concludes with a summary of the results of these two studies as well as a discussion 

on possible areas for further research. Additional simulation results for the random effect errors-in-

variables model are given in Appendix I while Appendix 2 presents additional simulation results for 

the random coefficient errors-in-variables model. 
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ANALYSIS OF PANEL DATA USING A RANDOM EFFECT 

ERRORS-IN-VARIABLES MODEL 

A paper to be submitted to the Journal of Econometrics 

Elizabeth Martha Paterno and Yasuo Amemiya 

Abstract 

Random effect analysis for panel data is considered when some explanatory variables are measured 

with error. In some applications (e.g., economic analysis), the covariance between the random effect 

and the unobservable true explanatory variables is to be estimated and contributes to the difficulty of 

the problem. Identification of model parameters given the first two moments of observed variables is 

examined, and relatively unrestrictive sufficient conditions for identification are obtained. Estimation 

based on maximum normal likelihood is proposed. This method can be easily implemented using 

available computer packages that perform moment structure analysis. Compared to the only existing 

procedure based on instrumental variables, the new method is shown to be more efficient and to have 

much wider applicability. Standard error estimates and goodness-of-fit statistics obtained under the 

assumption of normally distributed observations are shown to be asymptotically valid for a broad class 

of non-normal observations. Simulation results demonstrating the efficiency and usefulness of the new 

procedure are presented. 

Introduction 

Panel data sets consist of observations from a number of individuals repeatedly measured over time. 

Alternatively referred to as longitudinal data, they arise often in various fields. In many applications in 

economics and other social sciences, time points in which measurements are taken are equally spaced 

and are usually common for all individuals. Moreover, the number of time points tends to be small 

relative to the number of units from which measurements are taken. Thus, when a dependent response 
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variable Y and a A: x 1 covariate vector x are measured, a typical panel data set consists of (iif.xjj). 

J = 1.2 n. t = 1,2,..., T. where n is the number of individuals, and T is the number of time points 

common to all individuals. Here, x,t, in general, represents a time- and individual-dependent covariate 

vector. Using these data, researchers are often interested in fitting regression models of the type 

Yit = ao +/3oXft -He,° , 

where the e°('s represent random errors with mean zero. 

Observations taken from an individual over time are usually expected to contain some nontrivial 

individual-specific characteristic. To account for this individual variability, statistical models containing 

individual random components are used in panel data regression analysis. One such model, the random 

effect model, assumes that 

Yit = ai +0'xit+eit, 

OCi ~ (/io,0-oa). (1) 

e.t ~ (O.O-ee) ,  

where q, and are independent, and a,-, i = 1,2,..., n, represent random unobserved individual effects 

possibly correlated with R,f. For this population of individuals, the average intercept is fia = E[q,], 

and (Taa = V[a,] is the variability in the response Y'it due to the individual differences. 

However, the k x I vector of regressors x,t often cannot be precisely measured. The existence of 

measurement errors in most economic data has long been recognized. In fact, many studies have found 

serious measurement error in the panel data used in common economic analyses (see, e.g.. Bowers and 

Horvath, 1984; Duncan eind Hill, 1985; Altonji and Siow, 1987; Bound et al., 1990; Aasness, Biorn, 

and Skjerpen, 1993). Not only do measurement errors arise from the survey process in the form of 

transcription, transmission or recording errors, variables may also be said to contain measurement 

error because the theoretical concepts they represent have no observable counterparts. For instance, 

concepts in economics such as utility, ability and achievement cannot be directly measured. In addition, 

data available to researchers may not be the same quantities to which economic agents react. Thus, 

researchers have to use the observed but fallible measure, X,(, where 

Xit = x,t + u,t. (2) 

Here, the measurement error u,j is assumed to have mean zero and to be independent of xu and e.t-

The elements of u,t corresponding to error-free variables are zero, but the problem is formulated here as 
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if all elements of x,j are measured with error. In most problems in economics, the measurement errors 

for different components of xu can be treated as independent, but errors may be correlated over time. 

The statistical consequences of not accounting for errors in explanatory variables in models for 

cross-sectional data include biased and inconsistent parameter estimators. When measurement error is 

accounted for. model parameters cannot be identified without extraneous information in the form of 

replication, valid instruments, or additional assumptions (Fuller. 1987). The presence of measurement 

error also affects the performance of standcird panel data methods. Solon (1989, p. 494) noted that "es­

timation procedures commonly used with panel data are especially vulnerable to bias from measurement 

error if the measurement error is less serially correlated than is the true value of the measured variable." 

While many studies have examined measurement error models using cross-sectional data, the random 

effect model (1) with measurement error structure (2) has not been discussed widely, but is clearly an 

important problem in economics and other related fields. 

The usual statistical formulation of model (1) does not allow interaction of a, and the individual 

explanatory variables. However, in some economic applications, researchers assume nonzero correlation 

between the random intercept o, and the covariate x,£. This idea is based on the assumption that 

the random intercept a,- contains the effect of time-independent, individual-specific covariates that are 

either not included in the equation or not observable (Mundlak. 1978). Not accounting for such a 

correlation between q, and the covariate x,f leads to biased estimates of in (1). Hence, estimating 

the parameters of the model assuming the possible existence of such correlations and making inferences 

about the correlations may be desirable. 

Upon combining this correlation issue and the possible correlation of the elements of (u,t,e,t) over 

time, one ccin express the random effect model (1) with errors-in-variables as follows. For i = 1,2,..., n. 

let 

Yf = {YiuYi2 YiT)\ 

Then, model (l)-(2) with associated assumptions can be written as 

Y, = q,1 t+ x ,)3+e,,  (3a) 

X, = x. + U i ,  (3b) 
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where q,, e, and u, are independent of each other and identically distributed over individuals / = 

1,2, n, and x, is independent of e,- and u,-. If x, "s are also treated as identically distributed T x k 

random matrices, then we have 

(3c) 
vec X, 

vec Xi 

V[vec Uf] = Suu = 

0. E[u,] = 0. 

0 

0 

••UUt 

(3d) 

(3e) 

(3f) 

{3g) 

where the vec operator stacks the columns of a matrix in a single vector starting with the first column. 

Suu, is T X T, /Xj is Tk x 1, <Tra is Tk x 1 and is Tk x Tk. Although the random sample 

assumption for x, will be dropped later, the form of the first two moments in (3c)-(3g) is useful in 

discussing identification and estimation issues. 

A limited literature exists for estimation of special cases of model (3). Griliches cind Hausman (1986) 

studied model (3) with k = I. They suggested eliminating q,- in (3a)-(3b) by taking the difference 

Vft - Yi, = 0{xit - If,) + fit - e.-,, « ^ s = 1,2 T. (4) 

cmd estimating /3 using (4). Furthermore, they pointed out that the model parameters can be identified 

without the use of external instruments. That is, various functions of A',,, q = can be used 

as instrumental variables for (x,t — r,,) given information about the distribution of x, and u,. By 

forming all possible equations of the form (4) and using the appropriate instruments for (x,t — x,,), 

several (initial) estimators of 0 can be obtained, one estimator per equation. Griliches and Hausman 

suggested the use of the generalized method of moments (GMM) method (Hansen, 1982) to combine 

these instrumental variables estimators of 0. However, this IV/GMM method is difficult to use in 

practice. Finding cind verifying the validity of instrumental variables used is difficult, with the degree 

of difficulty increasing as more variables measured with error are included in the model. The use of 

instrumental variables also requires that assumptions be made about the distribution of x, and u, . 

Conditions required for the validity of a particular choice of the instrumental variables involve these 
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assumptions and are very specific, and their violation leads to the use of invalid instruments. Even with 

a valid set of instruments, this estimation method may not be the most efficient. Furthermore, only 3 

is estimated, and no other parameter of the origined model is estimated. Lastly, this approach does not 

provide useful insights into the overall identification problem. 

VVansbeek and Koning (1989) also considered model (3) with i = 1, axa = 0. and independently and 

identically distributed measurement errors. u,t. For this simple model, they suggested the use of ma.x-

imum likelihood estimation under the normality of all variables, and they discussed the identification 

issue. They argued that this approach may be preferable to the GMM approach under the assumption 

of normality since the fourth-order moments used in GMM estimation tend to be more volatile com­

pared to second-order moments. They derived local identification conditions for 8 based on using the 

(corrected) covariance matrix of the observed variables and found that a sufficient condition for local 

identification is that the must have different diagonal elements or different off-diagonal elements. 

These identification results are incomplete in the sense that information in the sample mean vector is 

ignored. Hsiao and Taylor (1991) also discussed the identification of model (3) but with fixed effects 

Qi. Biorn (1992) examined model (3) with i = 1 and focused on estimation procedures that eliminate 

the individual effect Q,-. He demonstrated that, given certain assumptions about the distribution of x, . 

consistent estimators can be constructed by taking a weighted average of inconsistent estimators. 

General Approach eind Identification 

where 0 is a vector of ail unknown parameters in (3). Note that model (3) does not specify a particular 

distributional form of the random variables involved except for the first two moments. Thus, it seems 

s e n s i b l e  t o  d i s c u s s  i d e n t i f i c a t i o n  o f  t h e  m o d e l  p a r c i m e t e r  6  o n l y  t h r o u g h  t h e  f i r s t  t w o  m o m e n t s  y { d )  

and fl(0). That is, we investigate whether 9 can be uniquely determined given f[9) and If 

all variables in the model are normally distributed, this approsich corresponds to the identification of 

the whole model. Without a particular distributional assumption (and possibly with non-random or 

In model (3), let 

(5) 

be the T { k  +  1) x 1 vector of observations from the i-th individual. Define 

E[Z.]=-y(0), 

V[Z.] = n(0), (6b) 

(6a) 
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dependent x, ), the approach based on the first two moments provides a way to discuss the identification 

of the model parameter 6 without relying on a special distributional structure such as nonzero third 

moments. This approach falls under the general method known as structural equation modeling or 

moment structure ancilysis that is widely used in many social and behavioral sciences. See. e.g.. Bollen 

(1989), Bollen and Long (1993) and Hoyle (1995). 

For model (3), the moment structures (6) are given by 

M B )  =  

n { e )  =  
SIYY 

^ X Y  "XX 

IT (/3 ® IT) 

MoIT + (^' ® ITIMX 

Mr 
(7) 

O-aa Cr 

(Tea Sj 

1'T 0 

IfcT 

0 

0 Suu 
(8) 

with0= (/3',fjiQ,fi'e,(vech See)'r (vech S„u, )'..••, (vech Suufc)',foa,o^a. (^ech Sxx)')'-where vech A 

denotes the vector created by listing the elements of matrix A on and below its diagonal starting with 

the first column. Therefore, the parameters of model (3) are to be determined using the following 

equations: 

fY = t^alT + (13' ® lT)Mr. (9a) 

fx = Mr- (9b) 

CIyY = O'oalrlT + (^'® lT)Srr(/3 ® IT) + lTO"ro(^ ® IT) + (y3''SI lT)o'xalT + See. (9c) 

^XY = + Sir(;3 (S> IT), (9d) 

ilxx = S„ + blockdiag(Suu,,--,Suu^). (9e) 

For the parameters important in practice, namely the average intercept and the regression coef­

ficient /3, the following is a sufficient condition for identification. 

Theorem 1 The parameters Ha > Mr "re identified if 

rank [ I7. 1, (10) 

where = £^[x:]. 

Proof: Clearly, is identified from (9b). Given /Xj. from (9b), Ha and y3 are uniquely determined by 

(9a) under (10). • 
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Hence, Ha. Mr ^.nd are identified if T is larger than k and if no redundancy in the columns of x, is 

expected on average. This implies that the population mean of any of the explanatory variables cannot 

be constant over time. Also, only information from the mean of the observed variables is needed to 

identify Ha and 0, provided condition (10) holds. Note that there is no restriction on the form of o-ra-

Srr, See and the T xT measurement error covariance matrices Una,,] = For the case 
n 

where x, 's are not considered a random sample, the condition in (10) with Mr = plim„_^oo ̂  ̂  x, is a 
«=i 

sufficient identification condition for /ia, fi^ and in the sense of the existence of consistent estimators. 

In checking the identification of the other parameters in (3), we introduce a large class of models for 

the T X 1 error vectors e,- emd up' = ("a'' • • • > "It )> j ~ time series, heteroscedasticity. 

or other types of models express the T xT covariance matrix in terms of less than parameters. 

Virtually all practical models have a covariance matrix belonging to the following class: 

Definition A parametric model S('y) for aT xT covariance matrix is said to be identified 

through contrasts «/-y can be uniquely determined from S(ir)Q for some Tx(T—l) matrix 

Q satisfying l^Q = 0. 

The T X T covariance matrix of a T x 1 random vector with essentially any time-dependent structure 

(except the unrestricted model) satisfies this definition. For excmiple, the heteroscedastic uncorrelated 

(diagonal) structure and any AR or MA model give a covarizince matrix satisfying this definition. For 

the identification of model (3), we consider two cases depending on whether <7^0 is assumed to be zero. 

Note that the assumption that <Tca 9^ 0 is sometimes made, while the usual statistical formulation of 

the random effect model specifies that <rra = 0. 

Theorem 2 Assume that <Tca is known to be zero, and that (10) holds. Assume also that l3j 0,j = 

I. ...k, and See ts identified through contrasts. Then, all parameters in model (3) are identified. 

Proof: By Theorem 1, under (10), Ha, and are identified from the mean vector. For the covariance 

matrix components (9c)-(9e) with o-ro = 0, we consider a transformation given by 

IT 

0 

-(Y9'®LT) 

IFET ^ X Y  

It 0 

—(/3 ® IT) I/tT 

fiyy 

SI'XY 

SI'XY 

^'xx 

(11) 

Here, 

rtyY — ''"ooItIT ® IT)Suu(^ ® IT) + Seei 

Sl'xy = -blockdiag(Suu, SUUJ(/3 0IT) 

(12a) 
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—3\ Suui 

: . (I2b) 

—0k^uUk 

Sl'xx = Srr+blockdiag(Suti,,---,S„uJ. (12c) 

Given 3j ^ 0, Suu,= 1.2,...,it, can be determined using (12b). Using these values of S„u,. Srr 

can be solved for in (12c). Next, using Q for the contrast-identified See. transform (12a) to get 

flyy = nyy[ 1^. Q ] 

= [ ro-aolT. O t x ( T - I )  ] + [ Seelr. SgeQ 1 

+ (/3'® It)S„u(/3 ® IT)[ IT, Q ]• (13) 

Then, given the last (T" — 1) columns of flyy ^ ^ ^uu, r J = 1 See is identified since 

all unknown elements in See can be determined from SeeQ- Once See is solved for. (13) also gives 

(^cga • ^ 

Thus, in the usual statistical formulation w^ith Cra = 0. model (3) is identified with unrestricted Suu, 

Of course, the identification result still holds if any time series or any other model for ' is assumed. 

In addition, equation errors e,t need not be assumed independent and identically distributed and can 

have almost any type of time series models. In (12b), if l3j = 0, then only the corresponding Suu^ is not 

identified. Thus, in a model with some explanatory variables measured without error, the coefficients 

of the error-free variables may be zero and the whole model is still identified. In practice, the condition 

of nonzero j3j is not restrictive. Note that even with 0j = 0, the whole is identified. Therefore, it is 

possible to test the condition 3j = 0. If 0j is determined to be zero, the corresponding ar-variable can 

be dropped from the model, and all parameters in the reduced model are identified. 

If (Tea cannot be assumed to be zero and is an unknown parameter to be estimated, some restrictions 

on the distribution of uj"'', j = 1,2,...,/:, are required for identification. The ne.xt result gives a simple 

set of fairly unrestrictive sufficient conditions that apply in this case. 

Theorem 3 Assume that (10) holds and that each ofl^ee, Suu,> j = 1,2,...,^, is identified through 

contrasts. Assume also that 0j ^ Q,j = Then, all parameters including a-ra model (3) 

are identified. 

Proof: As in the proof for Theorem 2. consider a transformation of n(0) given by (11) so that (I2a) 
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rL'xY — 

^'XiY 

^ X i Y  

\ ̂'x^Y / 

— O'ra^T ~ 

Suui 

(14) 

Then, transform each T x T sub-matrix ^I'x^y in (14) using 

= It Q" 1' 

where Q" corresponds to the contrast-identified S„u, • This yields 

'̂XY — [ TcTxa OTfcx(T-l) ] ~ 

/^feSuujlr /?feS UUfc Qjt 

(15) 

Thus. Suuj, J = 1.2 k, are identified from the last (T — 1) columns of fi'xY using 3j ^ 0 and the 

contrast identification condition. Once the Suu/s eire determined. (15) also yields <Tiq. The argument 

used for (13) proves the identification of See and <Taa- O 

Therefore, for a large class of practical models for en and up', the Tfc x 1 covariance (Txq between the 

random intercept and cill true regressors can be estimated. Thus, various forms of time-dependent 

errors can be accommodated. One may postulate heteroscedastic measurement errors, i.e.. 

V[u|^'] = V 

- / „(j) \ 

"t2 = 

J j )  
\ "iT / 

(Tj I 0 ... 0 

0 <rj2 • • • 0 

0 0 CjT 

y  =  i . 2 .  . k .  

Measurement errors may adso be assumed to follow some autoregressive (e.g., AR(1) or AR(T' — 2)) or 

some moving average processes. The same is true for equation errors, e,£. As in Theorem 2, if 0j = 0 

for some j, only the corresponding Suu^ is not identified. 

Note that Theorems 1, 2 and 3 list sufficient conditions for identification. By satisfying these 

conditions, one can ensure that the relevant model parauneters are identified. However, some model 

parameters may still be identified even if the conditions given in these theorems are violated. 
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Estimation 

We consider a method for fitting model (3) that is based on the first two sample moments and that 

does not specify a particular distributional form. For the observations Z, in (5). let 

1 " 
z=ii:z„ 

and 

S = i-y"(Z.-Z)(Z.-Z)'. 

If Z, is normally distributed, then Z and S form a set of sufficient statistics, and the maximum likelihood 

estimator of 6 in model (3) can be obtained by minimizing 

F(0) =  n {[7 . - i {B)]'n-He)[7.  -  f{e)]  + in |n(0)| + <r[Sn-'(0)] - In |S| - T ( k  + 1)}. (16) 

Let 6 denote the estimator obtained in this way. When Z,- is non-normal. 6 is still reasonable from the 

point of view of considering the function F[6) in (16) as a discrepancy between the sample moments 

(Z.S) and the population moments (7(0), fl(0)). No assumption other than the existence of the first 

two moments of the observed variables is needed. In this case. 6 is a method of moments (or moment 

structure analysis) estimator for model (3) without distributional assumptions. .Another justification 

for using d for non-normal data is given in the next section. 

There are various ways of testing the overall fit of the model. One straightforward test can be 

derived directly from the value of the discrepancy function in (16). If Z, is normally distributed, the 

likelihood ratio test for testing the form of f(6) and fl(6) as specified in model (3) against unrestricted 

first two moments is to reject the null hypothesis when F{0) exceeds cin upper percentile of a chi-square 

distribution. The degrees of freedom q for the chi-square distribution is given by subtracting the number 

of parameters in 0 from the number of elements in the unrestricted -y and ii, 

T ( k  + 1 )  +  ̂ T ( k  l ) [ T ( k  + l )  +  1]. 

In the next section, the use of this goodness-of-fit test for model (3) is considered when Z,- is non-normal. 

The estimator 0 can be computed using the standard statistical packages for moment structure 

analysis or structural equation modeling, e.g., LISREL (Joreskog and Sorbom, 1983) and PROC CALIS 

(SAS Institute, 1991). Even packages that perform covariance structure analysis, i.e., fit n(0) to S by 

minimizing 

n{ln |ft(0)|+«r[Sn-He)]-ln |S| - r(fc-h I)}. (17) 

I 
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can be used to obtain 6  and F ( d )  by substituting the augmented moment matrices 

S* = 
S + ZZ' Z' 

Z 1 
( 1 8 )  

and 

n - { 0 )  =  (19) 
n ( e ) + f { B h ( e y  -r(0)' 

-r(0) 1 

for S and fi(fl) in (17) to yield an equivalent form of (16) (Satorra. 1992).^ Such packages also compute 

asymptotic standard errors for all parameter estimates under the assumption of normal Z,. The validity 

and usefulness of such standard errors in the case of non-normal Z, are addressed in the next section. 

Asymptotic Properties 

In applications of the random effect analysis to panel data, the normal or even random sample 

assumption is often untenable. Observations may be discrete, bounded or from skewed distributions, 

and therefore, clearly non-normal. However, the estimator 6, its standard error under normality, and 

the test of model fit F(6) turn out to be useful for most non-normal data. 

Estimation when the normality assumption does not in fact hold is often done in practice and 

is referred to in the literature as pseudo ma.idmum likelihood (PML). Despite the violation of the 

normality assumption underlying the use of (16), the resulting PML estimator of 6 is consistent. How­

ever, inferences based on PML statistics may not be valid. Browne (1984) suggested using asymptotic 

distribution-free (ADF) methods, but ADF methods tend to be computationally intensive and statisti­

cally unstable since they involve fourth-order moments. Studies have also found that very large szimples 

are required to get the ADF-based chi-square goodness-of-fit test to perform adequately (see, e.g.. Hu 

et al., 1992 and West et al., 1995). In a different line of research, researchers have demonstrated that 

statistics generated under the normality assumption yield valid inferences even when the normality 

assumption cannot be made (see Browne, 1987; Anderson and Amemiya, 1988; Browne and Shapiro. 

1988; Amemiya and Anderson, 1990; Satorra, 1992; and Papadopoulos and Amemiya, 1996). The gen­

eral results in these papers are applicable for our model. Thus, we state, without proof, the asymptotic 

p r o p e r t i e s  o f  o u r  e s t i m a t o r  6  a n d  t h e  g o o d n e s s - o f - f i t  t e s t  s t a t i s t i c  F { 6 ) .  

The primary interest here is in the asymptotic covariance matrix of 6 and the asymptotic distribution 

of F(9). Thus, throughout this section, we assume that identification conditions are met so that a model 

' The error degrees of freedom reported by the package needs to be decreased by one to obtain the correct value. This 
adjustment must be made since n*(0) in (19) has one non-informative element that is a constant equal to one. 
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being discussed is identified. Then, the consistencj' and asymptotic normality of 8 readily follows. It 

turns out that ail of our results hold for essentially any t3T3e of random or fixed true values x„. For 

this, we assume: 

Assumption A The independent and identically distributed a, and the random or fixed 

true values x, satisfy, as n —¥ oo, 

Oi 
, a.s.. 

1 " 
- E  

1=1 

vec X 

Qi — a 

vec (Xf — x) 

t= i  \ vec X,  Mr 

^ Q,- — a, [vec (x,- — x)]' J O. a.s. 

where 

a = "aa " cQ 

^ xa Srr 

is nonstngular. 

In the following three results (Theorems 4-6) concerning the asymptotic inference procedures, the 

required conditions involve the class of models being fitted. Therefore, we assume throughout that the 

true model is contained in the class of models being fitted. For instance, the condition that a diagonal 

covariance matrix is fitted implicitly assumes that the true covariance is a diagonal matrix (although 

all diagonal elements may be equal). 

The first result assumes the relatively strong assumption of normal e, and but allows any 

unrestricted or time structure for e, and up', provided the model, with or without <Txa = 0, is identified. 

Theorem 4 Let Assumption A hold. Assume that e,- and up', i = 1,2, ...,n, j = 1,2,...,/:, are 

normally distributed and that the model given by (3) is identified. Then, the asymptotic covariance 

matrix of {/la,0 )' ts the same as that obtained under the normality o/Z,, and F{6) converges in 

d i s t r i b u t i o n  t o  X q -

Thus, for any distribution of or, , for any type of random or fixed x,-, cind for any identified model, 

asymptotic inferences for and /3 and for model fit made under the incorrect assumption of normally 

distributed observations are valid, provided the errors are normal. The normal error assumption can 

also be weakened keeping the same conclusion. For the case where iTxa is known to be zero and is not 

estimated, we have the next result. 

Theorem 5 Suppose CT^q IS known to be zero, and that Assumption .4 holds. .Assume either 
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(a) e, IS normally distributed, and any restricted or unrestricted See is fitted (provided model (3) is 

identified), 

or 

(b) e,- has any distribution, and a restricted specifically 

CTee.l ... 0 

s„ = (20) 

0 ... O-ee.T 

IS fitted. 

.Assume also that the 's have any distribution, and assume that for each j = 1,2, k. either 

(i) an unrestricted ^uuj ts fitted. 

or 

(ii) the heteroscedastic structure 

Smu. — 

0 CjT 

(21) 

is fitted. 

Then, the asymptotic covariance matrix of )' is the same as that under the normality ofZi. and 

F ( d )  c o n v e r g e s  i n  d i s t r i b u t i o n  t o  

For the case when Cro is to be estimated, the model may not be identified if the whole Suu, has to 

be estimated. Thus, we have the following result. 

Theorem 6 Suppose that <Tca is to be estimated, and that Assumption A holds. Assume either 

f a )  e,- is normally distributed, and any restricted or unrestricted See is fitted (provided model (3) is 

identified), 

or 

(b) e, has any distribution, and a restricted specifically 

o-ee.i ... 0 

See = 

0 ... O-ee.T 

IS fitted. 
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Assume also that the uj"''s have any distributwn. and assume that for each j = 1.2 k. the het-

eroscedastic structure 

o-ji ... 0 

— •. ; 

0 ... O-jT 
- f 

is fitted. Then, the asymptotic covanance matrix of (pia,0 )' is the same as that under normality of 

Z ,  ,  a n d  F { 9 )  c o n v e r g e s  t n  d i s t r i b u t i o n  t o  X q .  

Hence, the asymptotic inferences for and for model fit can be carried out correctly using the 

normality-based statistical packages for a very broad class of non-normal data. If a diagonal covariance 

matrix is being fitted to each error term, then any distributional form is acceptable for every variable 

involved in the model. The diagonal heteroscedastic form is often reasonable for measurement errors 

If «Txa is treated as zero, the unrestricted Suu, can be fitted without losing the validity of the 

normality-based inferences. The normality of e,t, the error in the equation, is considered a reasonable 

assumption in most cases, but this can also be dropped according to Theorems 5 and 6. Note that there 

is no restriction on the distributioneil form of the random intercept o, and the T ^ k true explanatory 

variable x, in Theorems 5 cind 6, as long as Assumption A holds. In fact, x, does not need to form a 

random sample and can be considered fixed constants. In some applications, a reasonable model for 

e, and u,-"'' is independent and identical distributions over time with a covariance matrix proportional 

to the T X T identity matrix, but the normality of the error term is suspect. In such a situation, the 

heteroscedastic covariance matrix with T diagonal elements to be estimated can be fitted to obtain valid 

normality-based asymptotic inferences. The loss of efficiency in fitting a larger number of parameters 

than needed is small for the estimation of (Iq and 0 because the contribution of estimating error 

structure is small in the overall variability of jla and 

Simulation Study 

This study consists of two parts. For both parts, model (3) with k = I, T = 3 and n = 200 

is used. In the first part, the proposed pseudo maximum normal likelihood (ML) estimator and the 

Griliches and Hausman (1986) instrumental variable estimator (IV/GMM) ofare compared when 

observations are normally distributed. The second part assesses the finite sample properties of the 

inference procedures based on the pseudo maximum normal likelihood method when observations are 

not normally distributed. Throughout, the ML computation was carried out using the SAS CALIS 

procedure using the Cholesky decomposition parameterization for any unrestricted covariance matrix. 
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IV/ GMM Estimation versus ML Estimation 

Data were generated eiccording to model (3) in which all random variables, including q , . x, t .  uu and 

e,£ were normally distributed. The true values of the parameters were set to 

/? = 1, /ic, = 4, (Taa = 1, O'ra = 0- and Sge = 2I3. (22) 

For the true values of /i^, Sri- and Suu. we considered three sets as described later. For the ML 

estimation, model (3), with o-xo estimated, See = creels and 

0-11 ^21 0 

Suu — <^21 (T'22 (T32 (23) 

0 <T32 <T33 

was fitted to each sample via maximum normal likelihood. Estimates of 0 were also computed using 

the Griliches and Hausman (1986) IV/GMM method. The IV/GMM estimation depends on the choice 

of instruments, which in turn, heavily relies on the assumed knowledge concerning the behavior of x,t 

and Uif Throughout, we used the instruments as given in Table 1. These instruments would all be 

valid under the assumed knowledge that u,('s are independent and identically distributed over time and 

individuals, that the mean of the true x,t differs over the three time points, that the three variances of 

r,£, t = 1,2,3, are different, and that the three covariances among i,t, t = 1,2,3 are unequal (unless a 

certain special structure holds). First, the two-stage least squares procedure is applied to each of the 

three equations with the two instruments to obtain an initial estimate of 0. Then, the three equations 

are combined by the generalized method of moments method to obtain the overall IV/GMM estimate of 

0^ 0GMM, as described in Griliches zind Hausman (1986). In addition to the 0GMM defined by Griliches 

and Hausman (1986), a modified version of 0, denoted by 0qmM' computed. The modification 

involved using a more efficient weight matrix arising from the assumption that both eu and u,t are 

independent and identically distributed over i and t. 

Table 1 Instruments used to compute initial estimates of 0 

Equation to be estimated Instruments 

V;-2 - Ki = 0(Xi2 - x.i) + (e.-2 — en) + X i 2 ,  A',3 

Yi3 - Yi2 = 0[Xi3 - 1,2) + (e.3 — f«2) 2(A'f2 + A' ,3),  A",i 

K-3 - Yii = 0(xi3 - r.i) + (e<3 — e«i) ;^.i + ^.-3, A'i2 
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The first set of 1000 samples was generated according to model (3) with true parameter values (22) 

and, in addition, 

Mr = 

/ 2 \  

\ 2 /  

= 

4.0 2.0 0.0 

2.0 4.0 0.0 

0.0 0.0 4.0 

and Suu — 

2 1 0 

1 2 1 

0 1 2 

The ML and IV/GMM estimates of 0 were computed as described above. Box plots of the resulting 

1000 estimates are given in Figure 1, where the dotted horizontal line meirks the true value of the 

parameter. The bias, variance and mean squared error for the three estimators are given in Table 2. 

For these true values, the assumed conditions for the instruments in Table 1 used in the IV/GMM 

estimation are not satisfied. In fact, for each of the three equations, both instruments used are invalid. 

As a result, the IV/GMM and modified IV/GMM estimators of 3 have large bias and mean squared 

error (Table 2) and almost always take values less than the true value (Figure 1). This illustrates the 

fact that if the specific knowledge assumed for the instrument choice is incorrect, then the performance 

of the IV/GMM estimator can be very poor and unsatisfactory. On the other hand, the ML estimator 

gives a reasonable sampling distribution even with estimation of (T^a and fitting many parameters in 

Suu of the form (23). 

E 
a 
UJ 

O 
d 

[V/GMM Modified tV/GMM ML 

Figure 1 Box plots of estimates of 0 for case I 
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Table 2 Monte Carlo moments for case 1 

Estimator Bias Variance MSE 

^gmm -0.28382 0.01097 0.09152 

/^MM -0.30778 0.01243 0.10716 

/?ML 0.00450 0.03557 0.03559 

= 

V 2 /  

s„ = 

fix, aJid S„„ were set to be 

p
 

o
 

p
 

o
 

p
 2 0 0 

p
 

o
 

00 p
 

o
 , and Suu = 0 2 0 

0.0 0.0 5.6 0 0 2 

(24) 

Then. 1000 samples were generated with the true values (22) and (24). The results on the three 

estimators are summarized in Figure 2 and Table 3. For this case, the assumed knowledge for the 

instruments in Table 1 used for the IV/GMM estimation is partially incorrect. That is, for each of the 

three equations, only the first of the two instruments is informative while both instruments are valid in 

the sense of independence with the error term. As e.xhibited in Figure 2 and Table 3, the IV/GMM and 

modified IV/GMM estimators possess sizable biases and tend to take many outlying values away from 

the true value of /3. The ML estimator has a much tighter sampling distribution around the true value. 

Thus, the IV/GMM estimator with a less than ideal set of instruments can produce a heavy-tailed 

sampling distribution and performs much worse than the ML estimator that estimates a larger number 

of parameters under less restrictive assumptions. 

Table 3 Monte Carlo moments for case 2 

Estimator Bias Variance MSE 

0GTAM -0.21359 0.10406 0.14968 

0GMM -0.21124 0.12188 0.16650 

/3ML 0.12163 0.08347 0.09827 

The third set of 1000 samples was generated using the true values in (22) and 

/ 
2 
\ 

4.0 2.0 0.8 2 0 0 

Mr = 5 2.0 4.8 2.8 , Suu — 0 2 0 

V 10 
/ 

0.8 2.8 5.6 0 0 2 

This is the case where all the knowledge assumed for the IV/GMM estimation is in fact correct and 

where the instruments in Table 1 provide an ideal set. The simulation results are given in Table 4 and 
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m -

IV/QMM Modified IV/GMM ML 

Figure 2 Box plots of estimates of /? for case 2 

(Two observations, /^GMM ^GMM = 
outside the range of values presented in this figure.) 

Figure 3. Table 4 also lists the bias and mean squared error of another estimator of 3. 0, obtained 

by the maximum likelihood method ignoring the existence of measurement error in the explanatory 

variable. This estimator has a small variance but a very large bias, and thus, it is an unacceptable 

estimator of 0. Estimation of 0 ignoring measurement errors cJin lead to a serious error, even when the 

measurement error variances are only ^ to j of the total variability of observed explanatory variables. 

In this case, with very informative instruments, the IV/GMM and the modified IV/GMM estimators 

perform nearly as efficiently as the ML estimator. However, even in such a situation, the ML method 

that estimates more parameters under more general conditions produces an estimator of 0 with smaller 

bias and variance than the IV/GMM estimators. 

Table 4 Monte Carlo moments for case 3 

Estimator Bias Variance MSB 

0 -0.10593 0.00036 0.01160 

0GMM -0.00201 0.00062 0.00062 

0GMM -0.00189 0.00060 0.00061 

0Mh 0.00028 0.00057 0.00057 
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IV/GMM ModTied IV/GMM ML 

Figure 3 Box plots of estimates of 8 for case 3 

Finite Sample Properties of the ML Estimator 

Simulations were also conducted to assess tlie finite sample properties of the maximum normal 

likelihood estimator when observations are not normal. The first set of results deals with situations in 

which the equation and measurement errors are normal but the true x's and the random effect Q, are 

non-normal. For these cases, by Theorem 4, the standajd error estimates and chi-square tests of model 

fit obtained under the normality of observations are still valid, although observations are not normal. 

Data were generated according to model (3) with k = I, T = 3, n = 200, and true parameter values 

(22) and (25). The equation errors e,t and the measurement errors u,e were normally distributed. Four 

different sets of 1000 samples were generated with different distributions of i,f and q, listed in Tables 5 

to 6, where N indicates a normal distribution and x~ indicates a shifted and scaled x" distribution with 

two degrees of freedom. The first set with normal x,- and normal a,- actually gives normal observations. 

Two versions of model (3) were fitted to each sample via mciximum normal likelihood. In one version, 

(Tra — 0 was not estimated, an unrestricted 3x3 matrix Suu was fitted, and See was fitted as 

cTggls. The second version involved estimating o-ra. fitting See as Cgeh, and fitting Suu as a-uuh-

The goodness-of-fit statistic F(0) as well as 95% confidence intervals for /lo and for 0 under pseudo 

normality were obtained for each sample and for each method of fitting model (3). Table 5 reports the 

simulated coverage probabilities while Table 6 presents the simulated probabilities for F(0) to exceed 
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the 0-10, 0.05 and 0.01 upper quantiles of the appropriate distribution. These tables indicate that 

Theorem 4 holds very well in finite samples and for various non-normal distributions for the true x"s 

and the random effect a, . The coverage probabilities in Table 5 are all similar to the nominal value of 

0.95. and the upper percentiles of the fit statistic are well approximated by the \- percentiles. Thus, 

valid inferences about Hq and /3 and about model fit can be made using standard errors and chi-square 

test statistics computed under the pseudo normality of observations for non-normal distributions of the 

random effect Q,- and the true explanatory variables x,- when the equation and measurement errors are 

normally distributed. 

Table 5 Simulated coverage probabilities of 95% confidence intervals 

(normal errors) 

Distribution <^ra = 0 CTxa estimated 

X,  a ,  3 Ma 3 

N N 0.953 0.952 0.953 0.955 

X- N 0.954 0.951 0.950 0.953 

N .Y- 0.963 0.952 0.957 0.954 
•> o 

Y" Y" 0.943 0.948 0.948 0.947 

Table 6 Simulated frequency of rejection of the \'" goodness-of-fit test 

(normal errors) 

Distribution (Txa — 0 <T' sa estimated 

Xf Or, 10% 5% 1% 10% 5% 1% 

N N 0.098 0.053 0.008 0.111 0.050 0.014 
O N 0.089 0.053 0.010 0.086 0.040 0.006 

N 
O 

Y" 0.106 0.052 0.014 0.118 0.069 0.017 
O 

X" 
•> 

Y- 0.097 0.049 0.011 0.103 0.052 0.014 

When the normality assumption cannot be made for both the equation errors and the measurement 

errors, the restrictions on the fitted error covariance matrices in Theorems 5 and 6 need to be satisfied 

for the normality-based inferences to remain valid. For this, data were generated according to model 

(3) with true parameter values (22) and (25). For x,-, a normal sample with n = 200 was obtained, and 

the same set was used for all 1000 simulation samples. Thus, x, 's were fixed over repeated samples. 

Since all other variables are independent of x, , the fixed x,- experiment corresponds to studying the 

sampling distribution conditional on x, 's. Thus, the coverage probability and percentile results here 

would apply to any x, that are independent of other random components of the model. Tables 7 and 
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8 indicate normal (N) and with two degrees of freedom (\-) distributions used for Qi. uu. and e,j. 

where (u,t,e,{) are all independent and identically distributed over t under (22) and (25). Two models 

were fitted to each sample with and without fitting <Tra- For the model with <Tca not estimated. See in 

(20) was fitted while Suu was fitted as an unrestricted 3x3 covariance matrix. For the model with o-ro 

estimated, See in (20) and the diagonal Suu in (21) were fitted. Both models satisfy the conditions 

in Theorems 4 and 5. The results are summarized in Tables 7 and 8. The coverage probabilities in 

Table 7 are uniformly close to the nominal 95%, and the x' approximation to the model fit statistic is 

very good in upper percentiles as indicated in Table 8. Thus, with proper application of the ML fitting 

based on Theorems 4-6, accurate asymptotic inferences can be made regarding and model fit 

for a broad class of non-normal data. 

Table 7 Simulated coverage probabilities of 95% confidence intervals 

(x,- fixed over repeated sampling) 

Distribution O-ra = 0 <Tsa estimated 

Q. Uit e.r f^a 3 tic /? 

N N N 0.948 0.949 0.948 0.945 
.\:= N N 0.953 0.951 0.951 0.951 

N N 0.952 0.957 0.950 0.959 

N N 
•> 

Y" 0.956 0.950 0.961 0.956 
o •> 

-Y" X* N 0.945 0.945 0.951 0.950 

,V- N 
O 

Y* 0.947 0.942 0.951 0.949 

N X-
*9 

Y" 0.948 0.955 0.953 0.959 
•) O 

X" -Y" 
O 

Y* 0.954 0.937 0.951 0.942 

Table 8 Simulated frequency of rejection of the x' goodness-of-fit test 

(x,- fixed over repeated sampling) 

Distribution O-xa = 0 O" za estimated 

Uit Cit 10% 5% 1% 10% 5% 1% 

N N N 0.112 0.053 0.008 0.111 0.055 0.006 

X' N N 0.112 0.043 0.011 0.101 0.052 0.009 

N 
•> 

Y* N 0.093 0.050 0.011 0.091 0.048 0.007 

N N n 
Y" 0.087 0.050 0.011 0.096 0.055 0.009 

0 
Y" 

n 
X- N 0.107 0.054 0.012 0.099 0.052 0.010 

•) 
Y" N 

•> 

Y" 0.099 0.057 0.003 0.101 0.047 0.008 

N 1 
Y" 

•> 
Y" 0.105 0.043 0.010 0.099 0.051 0.008 

O 
Y* 

•) 
Y* 

•> 

Y' 0.114 0.049 0.009 0.105 0.053 0.011 
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Summary 

Rjindom effect analysis with measurement error has not been widely studied, yet it is important 

considering the increasing use of panel data in recent years. The existing estimation procedure for such 

a model involves instrumental variables and is difficult to use in practice. This paper proposed a unified 

approach to the analysis that provides a systematic way of checking the identification of the model as 

well as a method for fitting the model. The model fitting method based on pseudo maximum normal 

likelihood gives inference procedures useful for a wide range of non-normal data. The simulation study 

supported the usefulness of the approach in practice. 
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RANDOM COEFFICIENT REGRESSION 

WITH ERRORS IN VARIABLES 

A paper to be submitted to Econometric Theory 

Elizabeth Martha Patemo and Yasuo Amemiya 

Abstract 

A random coefficient model that accounts for measurement error in the expianatory variables is 

studied. Two procedures axe proposed for model fitting and estimation. The generalized least squares 

method is developed for the first two sample moments with a distribution-free estimate of the weight. 

Since this method tends to yield very variable estimates in small samples, am alternative method, the 

pseudo maximum normal likelihood procedure is also developed. The latter, obtained by maximizing 

a hypothetical normal likelihood for the first two sample moments, produces relative stable estimates 

in most samples. Asymptotic properties of the two procedures are derived and are used to obtain 

valid standard errors of the estimators. Numerical results showing the finite-sample properties of these 

estimators are also reported. 

Introduction 

A panel data set consists of measurements taken over time from several individuals. Typically, a de­

pendent response variable Yu and a covariate vector x,t are considered for i = 1,2,..., n, < = 1,2,..., T". 

where n is the number of individuals, T is the number of time points common to all individuals and the 

vector x,t includes time- aind individual-dependent covariates. In economics and other socieJ sciences, 

a rectangular panel data set with no missing values is usually available and typically has a short time 

series on a large number of individuals. Often, researchers seek to describe the relationship between x,£ 

and Yit by fitting linear models of the type 

V'.t = ao +/9oX,t + e°£. 
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where the e°j's represent random errors with mean zero. Since observations taken from the same 

individual are potentially correlated, most models fitted to panel data attempt to account for the within-

individual homogeneity cuid between-individual heterogeneity in various ways. One such model is the 

random coefficient model that assumes that individual heterogeneity is manifested in intercepts and 

slopes that are stochastic and different over individuals. This is considered an appropriate assumption 

when individuals from whom measurements are taken are randomly sampled from some population. 

The random coefficient model contains, as special cases, the fixed and muced coefficient models with 

some or all coefBcients common for all individuals. The model where only the intercept is random over 

individuals is the standard random effect model. Consider the general random coefficient model 

(1 )  

where is independent of e,t, 0 is the average coefficient, and # represents the individual variability 

in all coefficients. This model provides a very flexible way of accounting for individual variability in 

panel data regression. As opposed to fitting different parameters for all individuals, the random 

coefficient specification reduces the number of parameters to be estimated while still accounting for 

individual heterogeneity by allowing coefficients to differ across individuals. 

In many applications, however, measurement error is often part of what is observed of x^t. That is. 

X,t is observed, where 

Xit = x,£ + u.t. (2) 

Here, the measurement error u,t is assumed to have mean zero and to be independent of x.t and e,t-

Measurement errors for different components of x,( can often be treated as independent, but errors 

may be correlated over time in some economic applications. For variables in x,t that jire measured 

exactly, the corresponding elements of u,t are zero. The parameters to be estimated consist of 

the variance-covariance parameters for e,t eind u,t, eind the parameters associated with the distribution 

of the true vdues x,t. 

Reczill that the standcird errors-in-variables regression model cainnot be identified without some in­

formation on measurement error variances or without instrumental variables. In applications in the 

social sciences, no information on the magnitude of the measurement error variMces is available. How­

ever, the random coefficient errors-in-variables model (l)-(2) can be identified without any additional 

information, despite the fact that the random coefficient covariance matri.x # also needs to be estimated. 

I 
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An intuitive reason is that the panel data structure indirectly provides some type of instrumental vari­

ables (see Griliches and Hausman (1986) and Patemo and Amemiya (1997)). This identification issue 

is discussed in the next section. 

The literature on the random coefficient model with no measurement error is extensive. The basic 

estimation issues are discussed in Swamy (1970), Carter and Yang (1986), Harville (1977). Laird and 

Wcire (1982), and Gumpertz and Pzmtula (1989). Applied work using the model without measurement 

error includes Nerlove (1965) for economics, Goldstein (1979, 1986) for education data, and Carter 

et al. (1986) for biometrics. Very few studies have examined measurement error models for peinel 

data. Griliches and Hausman (1986), Wansbeek and Koning (1989), and Paterno and Amemiya (1997) 

discussed identification and estimation of the standard random eflTect model, a special case of the random 

coefficient model, when all or some explanatory variables are measured with error. To our knowledge, the 

random coefficient model (1) with measurement error structure (2) has not been previously examined. 

This paper deals with a very general form of the random coefficient model with errors-in-variables 

given by (l)-(2). The approach of Griliches and Hausman (1986) for the random effect model cannot be 

directly extended to the random coefficient problem. Our approach here is related to that of Paterno 

and Amemiya (1997) for the random effect model. In this paper, without specifying the distributional 

form of , x,f, di, and u,^, conditions for identification are derived, and estimators are proposed. 

Large sample properties of the estimators and results of a simulation study are also given. 

Model and Identification 

To represent the general remdom coefficient model with some non-random coefficient, we assume that 

T X k matrix of expleinatory variables (excluding the intercept) can be divided into four submatrices of 

order T" x /:<(£= 1,2,3,A, k = ky + kn -1-^:3 + ̂ 4), 

X ,  = (Xi , ,X2 , ,X3, ,X4, ) .  

We assume that the coefficients of (Xi,-,X2,) are considered random over individuals, and that the 

coefficients of (X3,-,X4,) are common for all individuals. In addition, Xi,- and X3, are measured exactly, 

and X2i and X4i are measured with error. 

Then, a general random coefficient errors-in-variables model for the i-th individual's T" x 1 response 

Y, = (Vii, Yi2,..., Vir)' and T x k observed explanatory variable X, (i = 1,2,..., n) is 

Y, = +xu/3i,-(-X2,/32,+X3i733 + X4,-^4-Fe,-, (3a) 

X, = (XI,-,X2,,X3,-,X4,) + (0.U2,,  0.U4,),  {3b) 
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E[e,] = 0. V[e,] = (TeeIt-

f 1 

( , ̂ f Bo ) 

E /3i.- = . V = #, 

^ ^2.- ! K ^2 > K ! 

(3c) 

(3d) 

E[U2,] = 0, V[vec UOF] = Suujj = 

'(1) 
'tiuja 

0 ;(2) 
•"uuaa 

E[U4,] = 0, V[veC U4,] = S„„„ = 

0 0 

£(1) 0 •"uu« 

0 S(2) 

0 

0 

'uu-3-3 

0 

0 

y(fc4) 
««« J 

(3e) 

(3f) 

(3g) 

. ) = (s'l • ^2 ) • 

z. = £ = 1, 2 , . . . .  n .  

E[x,] = H r -  V[vec X,] = S„. 

where x,, (/?oi,;3'i,,^'2,)', e,-, U2,, and 114, are independent, and vec (ai.ao, 

Let 0 be a vector parameter consisting of vech Cee, vech m = 

1.2 k n ,  vech r n  = 1,2 , k ^ ,  and vech Srr, where vech A denotes the x 1 

vector created by listing the elements of a p x p matrix A on and below its diagonal stzirting with the 

first column. The parameter vector 0 needs to be identified based on the observations 

Y. 

vec X, 

Note that model (3) does not specify any distributioned form of /3o,, 0i,-, /S,,, e,-, U2,, U4,, and x,, except 

for the first two moments. Thus, it may be natural to consider the identification of 0 only through the 

first two moments of Z,-, 

Mz(0) = E[Z.], (4a) 

Szz{0) = V[Z,]. (4b) 

We investigate whether or not 0 can be uniquely determined given /i^(0) and Ezz(®)- This approach 

falls under the general method known as structural equation modeling or moment structure analysis 

that is widely used in social zmd behavioral sciences (see, e.g., Bollen (1989), Bollen and Long (1993), 

and Hoyle (1995)). 

A simple sufficient condition for identification of the (mean) regression coefficient/3 = (/?o,/3'i,^2,^3, 

is given in the first Theorem. 

( 
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Theorem 1 (3 can be umquely determtned from in Ha) if 

rank [ + 1. (5) 

Proof: This is immediate since 

= 

\ 
vec fx^ 

Recall that is T x k. Thus, ii T > k and if the (true) x-variables have sufficient Vciriability 

on average, then /3 can be identified. Up to this point, (xi.xo x„) has been treated as a random 
n 

sample. If x, are considered fixed constants, then condition (5) with = plim„_^oo ^ ̂  x, is sufficient 
t=i 

for the existence of a consistent estimator of /3. 

The following theorem gives conditions for the identification of the whole 6. For this, let 

xj^' = (1T,XU,X2.) = 

'u 

\ ""ri / 
Cji = ^[v«v;.,], J, £=1,2 r. 

and let Kp denote the matrix of zeros and ones such that vec A = Kp vech A for any p x p symmetric 

Theorem 2 G can be uniquely determined from tiz(9) and S/z(0) in (4) if (5) holds, tf no element 

of 02 and ts zero, and if the x + ij matrti 

^ (t'ecCu)' ^ 

[vec CTIY 

( v e c  C n ^ y  

(vec CVa)' 

y (vec CTTY I 

K(fc,+fe3+i). vech It (6)  

has full column rank. 
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Proof: With (5), and 0 are determined from Given /3. consider a transformation 

02 '  

^ /3o. -/?o ^ 

Y,- — Yt — ( X,- )P — ( It *ii *2i ) 0 U - 0 1  

\ 02i ~ 02 ) 

— ( Uo, U4, ) I I + e,. 
V 0^ 

Then. 

0 0 0 0 

0 Suui3 0 0 

0 0 0 0 

0 0 0 

V[Y*] = T + (/Si ® Ir)Suu3j(/32 ® It) + (/34 ®lT)Suii„(/34 ® Ir)+o'eelT. 

T = { r j t } ,  

X j i  =  t r ( C j e i ) ,  

Cov[Y-,vec X.] = [0,-/?2iSi\.'„ S0, 

V[vec X,] = Srr + 

where 02 — i02i< • • • ^ 02ki)' and 0^ = (/?4i- • • - • P 4 k J ' -  With the nonzero condition on 0a-

and Suu^^ are determined from Cov[Y", vec X,]. Thus, Sn is determined from V[vec X,]. Given 0. 

Suu33. Sum4, ^ and Cee can be uniquely obtained from V[Y*] under the full column rank condition 

in the theorem. • 

Note that Cj^, j , £  =  1,2,. represent the changes in the second moments of the elements of 

(IT,XIF,X2I) over time. Thus, if the true I-variables corresponding to the random coefficients vary 

sufficiently over time to the extent of nonconstant second moments, then all pcirameters in model (3) 

can be identified from the first two moments of Z,-. The conditions in Theorem 1 euid 2 mean intuitively 

that the (true) x-variables cannot have redundancy over each other and time in the first two moments. 

.A. necessary condition is that T is large enough compared to ki, £ = 1,2,3.4, i.e., 

T> k + I, and 

T { T + l )  ^  ( k i  +  k 2  +  l ) { k i + k 2  +  2 )  ^  
2 - 2 

Hence, if T is large enough and if the true i-values differ sufficiently, then all parameters in the random 

coefficient errors-in-variables model (3) are identified without requiring the availability of any additional 

information. 

Throughout, the measurement error for each explanatory variable measured with error is assumed to 

have any unspecified covariance matrix over T time points. Since such a general error covariance matrix 
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can be identified, any more structured measurement error covariance matrix can also be identified under 

the same conditions. 

Estimation 

As in the identification discussion, we consider estimation of all pEurameters in model (3) without 

specifying the distributional form of e,-, uoi, U4,, and x,. A natural approach to this is 

to base our estimation on the first two sample moments. Let 

Z. 
W, = 

vech (Z,- -Z)(Z.-Z)' 

" . = 1  
Z  =  I F Z . ,  

1 = 1 

S = ^S(Z.-Z)(Z.--Z)'. 

w = 
vech S / " 1=1 

"  1 = 1  

Under the identification condition in the previous section, a method of moments estimator of 6 can be 

obtained by minimizing some distance between W and T/(0). A natural measure for distance without 

specifying the distribution of Wf is 

Q(0) = n[W- T ,(0)]'n-'[W- T ,(0)], (7) 

where ft is a distribution-free estimator of V[Wi] given by 

si = ^j-^f^(wf-w)(vv;-w)'. (8) 
1=1 

We call the vjJue of 6  minimizing Q ( 9 )  in (7) the generalized least squares (GLS) estimator of 6  and 

denote it by 0GLS-

Studies in the covariance structure analysis literature (e.g., Hu et al., 1992 and West et al., 1995) 

have pointed out that SI in (8) tends to have a large variance even in fairly large samples, making 0gls 

unstable and vaxiable. Thus, despite the large sample optimcility of 0GLS. we consider an alternative 

estimator that may be less vMiable in finite samples because of its simplicity. Let 

1(0) = n{[Z - /Xz(0)]'Sii(0)[Z - nz(e)] + In |Sz2(fl)| 

+ <r[SSi^(0)]-In |S|-r(A: + l)}. (9) 
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If Z, is normally distributed, the value of 6  minimizing L { d )  is the maximum likelihood estimator. 

I n  t h e  r e i n d o m  c o e f f i c i e n t  m o d e l s ,  t h e  o b s e r v a t i o n  Z ,  i s  n o t  n o r m a l l y  d i s t r i b u t e d .  C o n s i d e r i n g  L ( 6 )  

as a distzince between W and r}(d), the pseudo maximum likelihood (PML) estimator, denoted by 

^PML and obtained by minimizing (9), is expected to be a reasonable estimator without specifying the 

distributional form. Note that 0pml does not involve any statistic other than W and that ©pml can be 

conveniently computed using stJindard packages for moment structure analysis or structural equation 

modeling (e.g., PROC CALIS (SAS Institute, 1989)). 

The following theorem gives the asymptotic distributions of ^gls and 0pml under a very general 

condition. The large sample result applies when the number of individuals n is large while the number 

of time points T may not be large. Let do denote the true value of 9. 

Theorem 3 Assume a general identification condition 

(a) for any e > 0 there «s a > 0 such that if \9 — 9o \ > e then \ri(d) — »7(0o)| > S. 

Also assume that the distribution of Si, ujf, u^,-, (/?o,^j,-,/32,)' of^d x,- is such that either 

(b - i) 7>i's are independent and identically distributed with finite fourth moments, 

or 

(b - a J Z, 's are independent and possess bounded 4 + 7 moments for some 7 > 0. 

Then, as n —¥ oc. 

\/N(®GI5 — ^0) •A/'(0, FCIS), 

\ / n [ 9 p M L  — 9 O )  A  I V ( 0 , R P M L ) ,  

where 

RCLS = (F{,^LO'FO)-^ 

RPAFL = {F{,*O'FO)-'F'O^O'«O'®O"'FO(F'O®O'FO)-S 

Fo =  F(f lo )  =  

$O = '®(0O) = 

D9' 

fio = plim f2, 

SZZ(FLO) 0 

0 2K+[Szz(9o) ® Szz(9o)}K+' 

S2 is given in (8), K"*" = and Kp is defined before Theorem 2. 

Proof: The consistency of ^gls and 0pml follows from the identification condition (a), the form of 

the two distance measures, and the f£ict that plim W = 17(^0) under (6 — i) or (6 — it). The asymptotic 

normality is a consequence of the asymptotic normality of W under {b—i) or {b—ii) and of the derivative 
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form of Q { 6 )  and Z,(0). The limiting covariance forms can be derived using the standard derivative 

equations. The lower right-hand corner of "to is the limiting covariance matrix of vech S under the 

normcility of Z,-.D 

Thus, estimated asymptotic covariance matrices of 0gls and 0pml can be obtained as 

V[0GLS] = ^ [F'(0GLS)FI-'F(EGLS)] ' , (10) 

V[0PML] = ^ [F'(W)*(0PML)-'F(0PML)] 'F'(W)*(0PML)-'FI-'^-'F(0PML) 

[F'(SPML)^(®PML)~^F(SPML)] • (11) 

which can be used for asymptotic inferences for 6. In a very large sample, we would expect the inferences 

based on 0gls and V[rGLs] to be more efficient than those using 0pML and VfFpML]- However, the 

computation of ©pml does not involve any sample higher order moments in minimization, and tl appears 

only in the evaluation of V[rpML]- Thus, in small to moderate samples, the inference procedure based 

on ^GLS and V[rGLs] may not be as efficient or accurate as those based on 0pml and V[rpml] because 

of the high variability in ft. These issues are addressed in the next section using a simulation study. 

Simulation Study 

To examine the behavior of the GLS and the PML estimators in finite samples, 1000 samples of size 

n = 50, 200, and 500 were generated according to model (3) with ki = = 0, kn = 1. and T = 3. 

We write the model as 

Y.- = ( L3 X.- ) + E,-, 

$ = 

0 

4>aa 'P0a 

4>0a <t>0a 

Stochastic components in the model, x,-, u,- and e,, were generated as normally distributed 

variates. Note that this data generation procedure results in normally distributed X,-'s but not nor­

mally distributed Y,'s. Thus, the observed vector Z, is not normally distributed. For simplicity, the 

measurement errors e,t and u,t were generated as independently and identically distributed over time 
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and over individuals, and thus var[e,] = o-gela and var[u,] = cTuuIs- The true parameter values were set 

to be 

$ = 
2 1 

1 3 
= 4. o-uu = 4. 

and Srr = 

4.0 2.0 0.8 

2.0 4.8 2.8 

0.8 2.8 5.6 

Model (3) with e,f and u,t treated as independent and identically distributed over time and over indi­

viduals was fitted to each sample via generalized least squares and via pseudo meiximum likelihood. The 

GLS estimator, BclSJ was obtained by minimizing (7) while the PML estimator. SrmLt was obtained 

by minimizing (9). In both minimization algorithms. # was re-peirameterized to be the lower triangular 

r satisfying $ = FF'. so that the resulting estimate of $ is always in the parameter space. 

B—a 
3 ^ 
s 

i ~ 

n  ̂
I 

id U 

* • » 

B 

GLS PML Naive GLS PML Nafve 

Figure 1 Box plots of estimates of a  and f 3  ( n  =  500) 

Figure 1 gives box plots of estimates of ^ for n = 500, including a naive estimator that is produced by 

standard random coefBcient analysis ignoring the existence of measurement error. In Figure I, there are 

17 observations of Aa.QLS that are less than 2.6 and have been omitted from the box plot of estimates of 

Ha- In these and all other box plots, the true value of the parameter is indicated by a dotted horizontal 

line. Figure 1 clearly shows that the naive estimator ignoring measurement error is useless due to its 

large bias. On the other hand, the PML and the GLS estimators have very small bias, and the major 

portions of their sampling distributions are roughly symmetric around the true value. 

Figure 2 presents box plots of the GLS and the PML estimators of a and 0, where the scales of 

the plots are kept constant over n = 50. 200, and 500. For estimating a, the GLS estimator tends to 
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take values very far away from the true value, possesses some bias, and has a heavy-tailed sampling 

distribution even with large n. The PML estimator of a is more stable and has a sampling distribution 

that is more tightly concentrated around the true value. For /?. the GLS estimator's high variability 

starts to disappear with n = 200. However, despite the inferiority in the limiting distribution, the PML 

estimator of /? is as efficient as the GLS estimator even for n = 500. 

Figure 3 gives box plots of the GLS and PML estimators of the elements <PaQ, o^q, and ogg of the 

random coefficient covariance matrix For 0aa and <l>0a, the two estimators' sampling distributions 

are rather similar to each other for all n, but for estimating <P00, the GLS estimator produced a large 

number of outlying values. Figure 4 presents box plots for estimating some elements of and S^x-

For the two estimators were very similar to each other. For the elements of Srr- the GLS estimator 

produced a large number of extreme values and was more variable than the PML estimator. As shown 

in Figure o, for the error variances (Tee and tTuu, the PML estimator was much more stable and less 

variable than the GLS estimator. Therefore, for samples of sizes considered here, the PML estimator 

may be considered superior to the GLS estimator in terms of finite sample stability and variability. 

The other basis for comparison is how well the estimators lead to valid inferences about the param­

eters. Table 1 lists the simulation variances of the estimates and the average of the estimated variances 

using (10) and (11) for the case with n = 500. The estimated covariance matrix (11) for PML is a good 

estimator of the variability of the PML estimator in the sense that the average estimated variances for 

the PML were close to the Monte Carlo variances. For GLS, the estimated variances using (10) are not 

as close to the simulation variances. For estimating #, some very large variance estimates seem to dom­

inate the variance estimates. For other parameters, the estimated variances generally underestimate 

the true variability. 

Table 2 gives the simulated coverage probabilities of nominal 95% confidence intervals formed using 

the GLS and the PML estimators and their estimated standard errors using (10) and (11), respectively. 

In small samples, the GLS coverage probabilities are unsatisfactorily less than the nominal level whereas 

the PML coverage probabilities were not very different from the nominal level of 0.95. In samples of 

moderate size, both the GLS and the PML methods generated confidence intervals with coverage 

probabilities that were similar to 0.95. However, especieilly for the varijince-covariajice parameters, the 

GLS coverage probabilities are less than the nominal level. The PML approach produced confidence 

intervals with coverage probabilities closer to the nominal level than the GLS approach. Although not 

reported fully here, we conducted similar studies where the x, 's were generated as chi-square random 

variables and separately, as fixed constants over repeated samples. The coverage probabilities for the 
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Figure 2 Box plots of estimates of a and 0 



www.manaraa.com

50 

n=50 n = 50 

n = 200 

n = 500 

l! 

1 
3 H 
r T 

n = 200 

n = 500 

n = 50 

* 

1 i. 

• 

GLS 

n 

PML 

= 200 
1 

1 
( 

J_ 

rh 

j 

' ' ' 

GLS 

n 
PU. 

= 500 

i 

Figure 3 Box plots of estimates of # 



www.manaraa.com

51 

n=50 n = SO n = 50 

1 t 

R-I 
L!J 

( 

GLS PUL 
n = 200 

GU PU. 
n = 500 

' RT*3 

1— 1 

1 
1 

rn 
bl 

n = 200 

n = 5(X) 

1 1 
L ~ 

1—1 

E 3 ^ 

GLS PUL 

n = 200 

j 

—1 1—"] 
3 S 

11 = 500 

Figure 4 Box plots of estimates of Sx,,ri 



www.manaraa.com

n=50 n=50 

n=2(X) 

n = 5()0 

5 2 1 

as 'Vl 

n=200 

GU PML 

n=500 

Figure 5 Box plots of estimates of Cuu and fee 



www.manaraa.com

53 

Table 1 Variance estimates for parameters (n = 500) 

Parameter GLS PML 

Simulation Average Simulation Average 

variance estimated varieuice estimated 

variance" variance 

Q 0.0957 0.0396 0.0626 0.0583 

3 0.0070 0.0066 0.0077 0.0079 

Oaa 6.0938 3.92x105 6.1081 9.7686 

000 0.4640 1.73x1011 0.4057 0.4520 

O g g  0.6265 1.57x101° 0.0735 0.0668 

0.0161 0.0144 0.0159 0.0151 

A'r, 0.0162 0.0140 0.0163 0.0159 

0.0189 0.0182 0.0183 0.0187 

""ri.x, 0.4587 0.3062 0.3027 0.2720 

""ra.Xi 0.1398 0.1242 0.1168 0.1208 

0.1422 0.1408 0.1406 0.1349 

0.5201 0.3537 0.3665 0.3216 

""rj.xa 0.2366 0.1978 0.1729 0.1664 

0.7556 0.3838 0.4859 0.4617 

""uu 0.6712 0.1394 0.1627 0.1499 

5.6144 2.5655 2.2432 2.2729 

"Median GLS variance estimates for <»aa. ^da and ©gg were 8.9272.0.5773. 
and 1.4337, respectively. 

GLS and PML confidence intervals for Q and 3 are given in Table 3. These suggest that PML generally 

produces more accurate intervals than GLS. and that the PML procedure seems to be reasonably robust 

over different types of the true values x, for making inferences about the mean of the random coefBcients. 

Summziry 

Random coefficient errors-in-variables models for panel data have not been previously studied. This 

paper examined this random coefficient errors-in-variables model and discussed identification and esti­

mation issues. Conditions for identification were derived based on the first two moments without using 

a specific distributional form. The model parameters are identified essentially if enough time points are 

included in the scimple. The identification does not require any outside information. Two estimation 

procedures, GLS zind PML, were presented without imposing particular distributional assumptions. 

The limiting distributions of the two estimators were derived assuming that the number of individuals 

tends to infinity. The finite sample properties of the estimators were assessed using a simulation study. 
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Table 2 Simulated coverage probabilities of nominal 95% confidence intervals 

(normal x,) 

Parameter n = 50 n = 200 n = 500 

GLS PML GLS PML GLS PML 
Q 0.559 0.947 0.845 0.948 0.916 0.938 

3 0.864 0.943 0.934 0.948 0.949 0.956 

Oaa 0.942 0.987 0.971 0.983 0.972 0.979 

<i>9a 0.885 0.978 0.929 0.964 0.936 0.966 

0g3 0.883 0.892 0.971 0.940 0.987 0.927 

0.861 0.953 0.928 0.946 0.942 0.949 

0.814 0.934 0.925 0.955 0.936 0.947 

0.860 0.940 0.934 0.948 0.939 0.944 

0.703 0.910 0.851 0.908 0.911 0.931 

•'"RA.RI 0.658 0.919 0.823 0.949 0.904 0.953 

""RJ.RI 0.943 0.943 0.949 0.939 0.951 0.943 

0.783 0.907 0.860 0.940 0.908 0.929 

0.652 0.945 0.840 0.938 0.897 0.934 

0.801 0.928 0.786 0.940 0.860 0.940 

CUU 0.665 0.944 0.742 0.930 0.838 0.940 

(Tec 0.967 0.994 0.959 0.974 0.876 0.944 

Table 3 Simulated coverage probabilities of nominal 95% confidence intervals 

(non-normal x,; n = 500) 

Parameter X, ~ X' X, fixed 

GLS PML GLS PML 

a 0.883 0.949 0.532 0.950 

3 0.949 0.931 0.532 0.938 

Despite its inferiority over the GLS in the limiting distribution, the PML estimator was superior in 

terms of finite sample stability and variability. The asymptotic inference procedures using the PML 

estimator are practically accurate for most sample sizes. 
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GENERAL CONCLUSIONS 

This dissertation has examined measurement error models for panel data or repeated measures. 

Such models have not been widely studied, yet, in contrast to cross-sectional data, panel data contain 

enough information to identify most, if not all, parameters in a typical measurement error model. 

Instead of using traditionaJ econometric methods to analyze these models, the moment structure analysis 

approach was taken. That is, identification and estimation of model parameters was considered given 

only information about the first two moments of the data. For the random effect errors-in-variables 

model discussed in the first paper and the random coefficient model considered in the second paper 

of this dissertation, most parameters were shown to be identified given only information about these 

first two moments and relatively unrestrictive conditions. Aside from this, an estimation method that 

utilizes only the first two moments of the data was also proposed. Although such a method was 

originally developed for normdly distributed data, simulation results showed that it performs well even 

with non-normal data and yield valid results. Moreover, the proposed method is easy to implement 

using existing statistical packages that perform moment structure analysis. Thus, moment structure 

analysis proves to be a good approach to fitting random effect and random coefficient models in which 

there is measurement error in the explanatory variables. 

The use of moment structure analysis as an approach to the identification and estimation of 

measurement error models for panel data opens up many possible areas for further research. For 

one, hypothesis tests regarding the pareuneters of interest in the model will have to be refined. The 

methods examined in this dissertation also assume that one has balanced data or that missing values 

are missing at reindom. In the social sciences, data are more likely to be observationed in nature, rather 

than experimental. Thus, attrition in panel data surveys may be a concern. Methods for measurement 

error panel data models for unbalanced data are therefore also needed. 
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APPENDIX 1: ADDITIONAL SIMULATION RESULTS FOR THE 

RANDOM EFFECT ERRORS-IN-VARIABLES MODEL 

A simulation study was cdso conducted using tlie rsindom effects errors-in-variables model with two 

explanatory variables measured with error, given by 

Y,- = AILT+(X|" XP' ) +®'' 

r(l) 

r(2) 

,(1) 

XP' 
+ 

U, 
(1) 

U ( 2 )  

" / N ( \ 
/^A 

E xr' 
= 

• 

V / ^ ) 
• ( \ ' " 

/ t QI ^AA 

V xr' — ^NA Sr... s;,,. 

(2) 
SxjXi 

E[ef] 

V[e,] 

0, E[ui] = 0, 

SEEI 

" UP' " SUU. 0 

0 SUUA 

( la )  

( lb )  

( I C )  

(Id) 

(le) 

(If) 

( Ig )  

w h e r e  =  ( x , a n d  u p '  =  ( u . - i ' , . . . ,  f o r  j = 1,2, i = 1,2, The following 

sections contain results for simulations using model (1) with T = 3 and n = 200- The first section 

compares the proposed pseudo maximum normal likelihood (ML) estimator with the Griliches and 

Hausman (1986) instrumental variable estimator (IV/GMM) of /3 = (/?i,/?2)' when observations are 

normally distributed. The second section assesses the finite sample properties of the inference proce­

dures based on the pseudo maximum normal likelihood method when observations are not normally 

distributed. Throughout, ML estimates were computed using the SAS CALIS procedure, and the 
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Cholesky decomposition parameterization was used for any unrestricted covariance matrix. 

IV/GMM Estimation versus ML Estimation 

Data were generated according to model (1) in which all random variables, including a, . x,(. Ujt 

and e,t, were normally distributed. The true values of the parameters were set to 

(2) 

21 0 

SUU, — 21 22 
/R(J) 
<^32 ,  J  =  1 . 2 ,  

0 "32 "33 

0\. = 1, 02 = 2, Ha = 4, aact = 1, 0-R,A = = 0, 

Stiui ~ Syua — I3 • and — Is-

Two sets of true values for described later, were considered. For the ML 

estimation, model (1), with (Tea = (""ria'estimated. See = feelsi and 

(3) 

was fitted to each sample via maximum normal likelihood. The Griliches and Hausman (1986) IV/GMM 

estimator of /3 was also computed. Throughout, instruments listed in Table 1 were used. These 

instruments would all be valid under the assumed knowledge that for j = 1.2. 

V[III'] + {E[X|I)]}= t V[XP,)] + {E[XG)]}^ 

COV[RK\ z\i^] + E[X|I>]E[XP3^] t COV[XJ^,). RPA'J + E[X|.I']E[XP3'], 

V[XG>]+{E[XG^]}= ^ V[XF3)] + {E[X|^3']}^ 

Cov[xH', x|i'] + E[xH^]E[xH,'] ^ Cov[x(f', X.P3'] + E[xH"']E[x|.^3)], 

V[X|I>] + {E[XK>]}- i. V[XP3)] + {E[XP3']}=, 

Cov[x|i', xii'] + E[x|i^]E[xg'] ^ Cov[xg\ xg)] + E[xi^,']E[xp3^]. 

(4a) 

(4b) 

(4c) 

(4d) 

(4e) 

(4f) 

In addition to the jSqmm defined by Griliches and Hausman (1986), a modified version of denoted 

by )3GMM' computed. The modification involved using a more efficient weight matrix arising from 

the assumption that both e,t and u,-f^ are independent and identically distributed over i and i. 

The first set of 1000 samples was generated according to model (1) with true parameter values (2) 

and, in addition. 

= 

\ 5 /  

V-x. = 
SR,R, 0 

0 S RJR. 
(5a) 
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Table 1 Instruments used to compute initial estimates of /3 

Equation to be estimated Instruments 
"v f I lO _(»)\ t /, 7 \ v(0 t •v(^) . r i 2  —  l i l  =  P l [ X i 2  —  2^,1 ) +  P 2 ( X i 2  ~  ̂ II ) + {F«2 — C«L) -^,1 + A.T . A,3 . 

-Yp' + A'^-' 

V;-3 - Y;-2 = 0I(XG^ - XJ^') +/32(RL^' - RL,->) + (E.-3 - E.A) 2(A'.<2'' + A'IA^'). 

2 ( X ^ V  +  A'^"'), A'!-' 

VB - = 0M3 - X\L^)+L32{X\L'' - X[R') + (£,3 - E.I) XL'J'+ XJ^KXJ^H' 

where 

4.0 0.2 3.2 2.0 0.2 0.1 

Sr.r, = 0.2 1.0 0.2 , and = 0.2 10.0 0.1 (5b) 

3.2 0.2 5.0 0.1 0.1 6.0 

The ML and IV'/GMM estimates of /9 were computed in the majiner described above. Figure 1 presents 

box plots of the resulting 1000 estimates. The bias, variance and mean squared error for the three 

estimators are given in Table 2. For the true values (5), conditions (4a) and (4b) are not satisfied. In 

other words, the instruments used for the first equation are invalid. As a result, the IV/GMM and 

modified IV/GMM estimators of /? have Icirge bias. Hence, the performance of the IV/GMM estimator 

can be unsatisfactory when specific knowledge assumed for the instrument choice is incorrect. On the 

other hand, the ML estimator has smaller bias despite the fact that more parameters are estimated 

together with /3 (e.g., erxa and Suuji J = 1.2, of the form (3)). 

Table 2 Monte Carlo moments for case 1 

Estimator Bias Variance MSE 

01,GMM -0.03195 0.01396 0.01498 

02.GMM -0.03083 0.00753 0.00848 

'l.GMM 

'j.GMM 

-0.03242 0.01334 0.01439 

-0.02975 0.00715 0.00803 

/?i.ML -0.02128 0.01939 0.01984 

/?2,ML -0.01116 0.00618 0.00630 
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IV/GMM Mo<ffied IV/GMM ML 

± 

IV/GMM Uo(Sffsd IV/GMM ML 

Figure 1 Box plots of estimates of and /?2 for case 1 
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The second set of 1000 samples was generated using the true values (2) and 

= 

2 ^ 

1 0 ;  

F*.. = 

3 ^ 

0 

15 

and Srr = 
SR.R. 0 

0 S RARA 
(6a) 

where 

SX,XI — 

4.0 0.5 1.0 

0.5 4.8 0.8 

1.0 0.8 5.6 

and Srjx, = 

5.0 0.5 0.2 

0.5 5.5 0.7 

0.2 0.7 6.5 

(6b) 

In this case, all the knowledge assumed for the IV/GMM estimation is in fact correct, and all instruments 

in Table 1 are valid. As shown in the simulation results given in Table 3 and Figure 2. the IV/GMM 

and the modified IV/GMM estimators using informative instruments perform as efBciently as the ML 

estimator. Even in such a situation, the ML method that estimates more parameters under more general 

conditions produces an estimator of 0 with comparable bias and variance as the IV/GMM estimators. 

Table 3 Monte CmIo moments for case 2 

Estimator Bias Variance MSE 

^2,GMM 

02.GMM 

/?1,ML 

/?2,ML 

0.00628 0.01600 0.01603 

-0.00417 0.00631 0.00633 

0.00671 0.01538 0.01542 

-0.00456 0.00608 0.00610 

0.01751 0.01647 0.01678 

-0.00999 0.00645 0.00655 

Finite Sample Properties of the ML Estimator 

Simulations were also conducted to assess the finite sample properties of the maximum normal 

likelihood estimator when observations are not normal. The following set of results deals with situations 

in which the equation and measurement errors are normal but the true x's jmd the random effect a, 

are non-normal. By Theorem 4, the standard error estimates and chi-square tests of model fit obtained 

under the normality of observations are still valid, although observations eire not normal. Data were 

generated according to model (1) with T = 3, n = 200, and true parameter values (2) and (6). The 

equation errors e,f and the measurement errors u\{\ j = 1,2, were normally distributed. Four different 
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UodfiedlV/GMM 

IV/GMM Mo<tfiedlV/GMM 

Figure 2 Box plots of estimates of 0\ and /?2 for case 2 
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sets of 1000 samples were generated with different distributions of xu and Q, listed in Tables 4 and 

6, where N indicates a normal distribution and x' indicates a shifted and scaled ,\- distribution with 

two degrees of freedom. Note that the first set with normal x, and normal a,- actually gives normal 

observations. Two versions of model (I) were fitted to each sample via maximum normal likelihood. 

One version, with erxa — 0 not estimated, involved fitting an unrestricted 3x3 matrix for each Suu,. 

j = 1,2, and fitting See as creels- In the second version, a-ra was estimated. See was fitted as o-gela, and 

each Suuj was fitted as (Tuuyla. j = 1t2. The goodness-of-fit statistic F{9) as well as 95% confidence 

intervals for fXa, and 02 under pseudo normality were obtained for each sample and for each method of 

fitting model (1). Simulated coverage probabilities are reported in Table 4 while simulated probabilities 

for F[9) to exceed the 0.10, 0.05 and 0.01 upper quantiles of the appropriate x- distribution are shown in 

Table 5. The coverage probabilities in Table 4 are reasonably similar to the nominal value of 0.95. Thus, 

valid inferences about /Xa, 0\ and 02 can be made using standard errors computed under the pseudo 

normality of observations for non-normal distributions of the random effect a,- and the true explanatory 

variables x, when the equation and measurement errors are normally distributed. However, as shown in 

Table 5, the upper percentiles of the fit statistic are not well approximated by the percentiles. Many 

of the large goodness-of-fit statistics were found to be associated with samples for which a near-singular 

estimate of Srr was obtained. An attempt to estimate model (1) while at the same time avoiding 

getting near-singular estimates of Srx was made. This involved adding a small fraction (say, ^) of the 

sample covariance matrix of vec x, to the estimate of Sxr then re-estimating model (1) via ML given 

this adjusted S^ estimate. The upper percentiles of the resulting goodness-of-fit statistics were still 

not well approximated by the x' percentiles. 
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Table 4 Simulated coverage probabilities of 95% confidence intervals 

(normal errors) 

Error variances Distribution Cxq = 0 oti-o estimated 

X, OCi fie 01 01 MA 01 01 

TEE — ^UU — 1-
N N 0.965 0.972 0.977 0.946 0.900 0.892 

n 
X- N 0.967 0.973 0.970 0.952 0.919 0.916 

N 0 
,V" 0.970 0.966 0.967 0.954 0.906 0.913 

n 
X-

0 
•Y* 0.973 0.972 0.976 0.951 0.913 0.908 

^EE ~ ^uu ~ 0.1. 
N N 0.963 0.996 0.998 0.937 0.937 0.961 

n 
X- N 0.960 0.996 0.995 0.942 0.948 0.953 

N 
o 

Y" 0.962 0.995 0.996 0.940 0.943 0.962 
n 

X-
•> 

Y* 0.959 0.996 0.996 0.932 0.935 0.950 

Table 5 Simulated frequency of rejection of the ,\ - goodness-of-fit test 

(normal errors) 

Error variances Distribution ^xa — 0 (T xa estimated 

X| Oti 10% 5% 1% 10% 5% 1% 

0"ee — ""uu — 1-
N N 0.373 0.334 0.292 0.322 0.233 0.138 

0 
•Y" N 0.397 0.347 0.308 0.330 0.244 0.124 

N 
•> 

0.349 0.301 0.276 0.288 0.216 0.119 
0 *> 

X" 0.390 0.345 0.314 0.341 0.261 0.146 

^ee ~ ^iiu ~ 0.1. 
N N 0.275 0.193 0.117 0.270 0.230 0.179 

n 
X' N 0.250 0.180 0.100 0.260 0.213 0.163 

N o 
X- 0.273 0.191 0.117 0.269 0.234 0.199 

o o 
X- 0.148 0.112 0.090 0.251 0.201 0.166 
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APPENDIX 2: ADDITIONAL TABLES FOR 

RANDOM COEFFICIENT REGRESSION 

WITH ERRORS IN VARIABLES 

The following tables present additional results of the simulation study on the finite-sample behavior 

of GLS and PML estimators for the random coefficient regression model with errors in variables, given 

bv 

Y. = { I3 X, 

X, = Xi + u,, 

+ e,-. ( la )  

( lb )  

( I c )  

# = (Id) 
'Paa 03a 

<!>Sa 

The estimates reported here are the result of fitting model (1) using GLS and using PML to each of 

1000 samples of size n = 50, 200, and 500 with normally distributed (Q,,/?,), x,, u, and e, and with 

var[e,] = (Teela and var[u,] = 0"„ul3- Tables 1 to 3 report the bias and mean squeired error of the GLS 

and PML estimators. Tables 4 and 5 present the simulation varicinces of the estimators and the average 

of the estimated variances for the cases with n = 50 and n = 200.^ 

' cable presenting variance estimates for the case with n = 500 is given on page 53. 
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Table 1 Bias and mean squared errors of estimators (n = 50) 

Parameter True Bias MSE 

Value GLS PML GLS PML 

4.0 -0.8615 -0.0160 2.4116 0.5601 

f^a 1.0 -0.0202 0.0153 0.0634 0.0831 

Octa 2.0 2.4607 2.7797 40.3986 43.3616 

0 d a  1.0 -0.6808 -0.4211 3.1874 3.8314 

oaa 3.0 -0.2648 -0.0799 1.0729 0.6173 

2.0 -0.0268 -0.0072 0.1888 0.1507 

5.0 -0.0646 -0.0142 0.2148 0.1679 

10.0 -0.0465 0.0100 0.2213 0.1856 

4.0 0.9596 -0.2867 7.7029 2.5655 

2.0 -0.9739 -0.1932 2.0306 1.1120 

0.8 -0.1904 0.0510 1.1579 1.2545 

4.8 0.9743 -0.1980 6.8817 3.1097 

2.8 -1.0436 -0.0645 3.2779 1.4188 

•'"rj.rj 5.6 1.1774 -0.2981 8.0164 4.3076 

(Tuu 4.0 -1.3087 0.0337 4.4989 1.6216 

4.0 -1.5015 -0.3841 11.5000 10.8481 

Table 2 Bias and mean squared errors of estimators (n = 200) 

Parameter True Bias MSE 

Value GLS PML GLS PML 

i"a 4.0 -0.2243 -0.0323 0.5035 0.1487 

1.0 0.0033 0.0151 0.0167 0.0196 

•Pao 2.0 0.8938 0.6635 11.4675 11.3131 

Ofla 1.0 -0.3740 -0.0722 1.0940 0.9680 

000 3.0 0.2881 -0.0149 0.9701 0.1597 

2.0 -0.0027 -0.0030 0.0412 0.0381 

5.0 -0.0172 -0.0036 0.0397 0.0397 

/'r. 10.0 -0.0068 0.0133 0.0483 0-0457 

""ri.ii 4.0 0.2801 -0.1590 1.7743 0.7490 

2.0 -0.3244 -0.0366 0.4901 0.2947 

0.8 -0.0588 0.0481 0.3678 0.3612 

4.8 0.3720 -0.0856 1.7343 0.8354 

2.8 -0.3073 0.0407 0.8106 0.4182 

""rj.xj 5.6 0.5018 -0.0810 2.4701 1.2150 

Cuu 4.0 -0.0691 0.0639 1.8095 0-4455 

0-ee 4.0 -0-8457 0.1575 6.6618 4.9999 
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Table 3 Bias and mean squared errors of estimators (n = 500) 

Parameter True Bias MSE 

Value GLS PML GLS PML 

f i a  4.0 -0.0314 0.0044 0.0967 0.0626 

1.0 -0.0018 0.0042 0.0070 0.0077 

Oaa 2.0 0.4993 0.0639 6.3431 6.1122 

O d d  1.0 -0.2976 -0.0190 0.5526 0.4061 

Oaa 3.0 0.3193 -0.0164 0.7284 0.0738 

f ^ T l  2.0 -0.0042 -0.0027 0.0161 0.0159 

5.0 -0.0034 0.0003 0.0162 0.0163 

10.0 -0.0019 0.0079 0.0189 0.0184 

""•ri.-ri 4.0 0.0637 -0.0496 0.4627 0.3052 

""rj.xi 2.0 -0.1292 -0.0025 0.1565 0.1168 

""•TS.Xl 0.8 -0.0459 -0.0143 0.1443 0.1408 

4.8 0.1379 -0.0409 0.5391 0.3681 

2.8 -0.1373 -0.0132 0.2555 0.1731 

""rj.xj 5.6 0.1690 -0.0552 0.7842 0.4890 

Cuu 4.0 0.0685 0.0029 0.6758 0.1627 

4.0 -0.1250 0.1213 5.6300 2.2579 



www.manaraa.com

68 

Table 4 Variance estimates for parameters (n = 50) 

Parameter GLS PML 

Simulation Average Simulation Average 

varicince estimated variance estimated 

variance'* variance 

a 1.6694 0.2860 0.5599 0.5812 

3 0.0630 0.0428 0.0829 0.0753 

Oaa 34.3436 1.08 xlO® 4.2529 91.8827 

oaa 2.7239 1.26 xlO"' 0.6418 4.4165 

090 1.0028 4.33 xlO® 0.5791 0.6641 

Mr. 0.1881 0.1062 0.1507 0.1519 

0.2107 0.1003 0.1677 0.1519 

0.2191 0.1356 0.1855 0.1847 

6.7820 48.9146 3.7153 2.9684 

1.0822 1.94 xlO® 1.1704 1.1285 

1.1217 1.59 xlO" 2.2880 1.2507 

""XA.RJ 5.9324 1.52 xlO® 0.5852 3.3610 

"'XS.I'A 2.1889 3.53 xlO^- 1.1897 1.5641 

6.6301 6.12 xlO^° 2.7991 4.8336 

(Txiti 2.7862 1.9983 1.6205 1.8441 

O'ee 9.2457 22.8906 10.7006 26.7966 

"Median GLS variance estimates for ipaa. <!>Ba were 56.3758, 
3879943, and 131.8147, respectively. 
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Table 5 Variance estimates for parameters (n = 200) 

Parameter GLS PML 

Simulatioa Average Simulation Average 

variance estimated variance estimated 

vciriance" variance 

a 0.4532 0.0949 0.1477 0.1462 

0 0.0167 0.0154 0.0194 0.0197 

10.6686 1.27 xl0^° 10.8728 24.0378 

<Pga 0.9541 3.06 xlO" 0.9627 1.1175 

<i>9d 0.8871 5.09 xlO^° 0.1595 0.1682 

0.0412 0.0343 0.0380 0.0378 

f^T:. 0.0395 0.0333 0.0397 0.0397 

0.0482 0.0438 0.0455 0.0471 

1.6958 0.7217 0.7237 0.6685 

""RA.RI 0.3848 0.2971 0.2934 0.2987 

""RS.RI 0.3644 0.3406 0.3589 0.3322 

1.5959 0.8303 0.8281 0.7852 

^C3,X3 0.7162 0.5998 0.4166 0.4167 

''"RJ.RJ 2.2183 0.9479 1.2085 1.1689 

^UU 1.8048 0.3502 0.4414 0.3785 

5.9466 6.4391 4.9751 5.7484 

"Median GLS variance estimates for (paa< 't>Ba 't'&B "ere 22.2383. 
1.5589, and 5.7510, respectively. 
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